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Abstract

When certain polymer amphiphiles and phospholipids are dispersed in a liquid, these molecules combine to form various
losed bilayer structures known as multiple vesicles. The specific structures of these vesicles play fundamental roles in
ytobiology and drug transportation. To model the multiple lipid vesicles in a fluid environment, we use the multi-phase
onservative Allen–Cahn-type equations with approximately area-preserving penalty terms to capture the vesicle interfaces and
he incompressible Navier–Stokes equations to describe the evolution of velocity and pressure. To efficiently simulate this
omplex coupled fluid system, we introduce several time-dependent variables to transform the total energy functional and the
overning equations into equivalent forms. Based on these equivalent models, we develop a totally decoupled, energy-stable, and
emporally second-order accurate time-marching scheme. A consistency-enhanced technique is utilized to correct the computed
nergy so that a more accurate solution is obtained. The time-discretized energy stability can be analytically estimated and the
olution algorithm in each time step is easy to implement. Various numerical experiments, such as multi-component vesicles
ith different initial shapes, multiple vesicles in shear flow, and multiple vesicles in complex domains, are performed to verify

he accuracy, stability, and capability of our proposed method.
2023 Elsevier B.V. All rights reserved.

eywords: Multi-component vesicles; Phase-field modeling; Fluid flows; Consistently energy-stable method

1. Introduction

In cytobiology science, the vesicle membrane plays an important role in the transmission of biological signals,
he storage of enzymes, metabolism, and other functions. To achieve different biological functions, the composition
f lipids, proteins, and cholesterol in the membrane varies significantly. Previous experimental and numerical
esearch [1–4] has observed that the surrounding environment can significantly affect the morphology of the vesicle
embrane. Moreover, the incompressibility of the membrane was considered to contribute to the conservation of

urface area. The balance of osmotic pressure between the interior and exterior of the membrane leads to the
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conservation of vesicle volume. Therefore, an appropriate mathematical model should take into account the constant
surface area and volume.

By considering the vesicle membrane as the interface between two incompressible fluids, the phase-field (diffuse-
nterface) method provides an effective approach to capture the deformation and motion of the interface. In the
hase-field method, the fluid interface can be represented by the zero level-set value of an order parameter. The order
arameter takes the values of 1 and −1 with respect to the bulk fluids inside and outside the interface, respectively.
y adopting an elastic bending energy functional, Du et al. [5] presented a phase-field-type binary fluid vesicle
odel. The dynamic evolution of the membrane was driven by the minimization of elastic bending energy. Later,
any researchers developed surface area-preserving methods based on the penalty approach [6] and the Lagrange
ultiplier approach [7,8]. To reduce the stiffness caused by the penalty term, Shin et al. [9] proposed a hybrid

enalty-Lagrange multiplier method for computing the binary phase-field vesicle model. Based on a similar binary
odel, Zou et al. [10] developed a linear, second-order time-accurate, and energy-stable scheme using the scalar

uxiliary variable (SAV) method. Recently, Ashour et al. [11] presented a fluid flow-coupled phase-field model for
he hydrodynamics of vesicle doublets.

In micro-vessel stenosis or micro-fluid devices, the deformation and adhesion of multiple vesicles should be
nvestigated. The binary phase-field model may not be suitable because when two vesicles are close enough, they
end to merge and form a larger vesicle. However, in reality, the coalescence of real vesicles does not occur. To
esolve this problem, the vector-valued phase-field approach [12–16] emerges as a suitable choice for developing
multiple vesicles model. Based on a vector-valued H−1-gradient flow model, Lee [17] proposed a hybrid phase-
eld immersed boundary method (IBM) for simulating cell divisions. Chen and Yang [18] constructed a multi-phase
uid vesicle system and designed an associated linearly energy-stable method based on the SAV approach. In each

ime step, several linear equations need to be solved to achieve totally decoupled computations. Compared to the
raditional linear semi-implicit method, their algorithm requires extra computational costs.

In most phase-field models, the minimization of energy functionals drives the evolutionary dynamics of solutions.
o obtain physically consistent results, a natural requirement is to design energy dissipation-preserving (energy-
table) numerical methods. For some standard phase-field equations, such as the Cahn–Hilliard (CH) equation, the
llen–Cahn (AC) equation, and the phase-field crystal (PFC) equation, many energy-stable methods have been
eveloped. For example, the convex splitting method [19–22], the stabilization method [23,24], and the auxiliary
ariable methods [25–28]. However, for the fluid flow-coupled multi-component vesicles system, developing energy-
table schemes by directly using the convex splitting method and the stabilization method is not trivial. Although the
lassical SAV-type auxiliary variable method [10,18] can easily construct unconditionally energy-stable schemes by
ntroducing auxiliary variables and eliminating the effect of nonlinear terms, the consistency between the original
nergy and the modified energy is not guaranteed theoretically. To this end, we aim to develop an efficient, totally
ecoupled, and linear energy-stable scheme with temporally second-order accuracy for the incompressible fluid
ow-coupled N -phase (N ≥ 2) phase-field vesicle model. The vesicle membranes are represented by the zero

evel-sets of multiple order parameters. The penalty technique and the Lagrange multiplier are adopted to achieve
he conservation of surface area and volume, respectively. By coupling with the incompressible Navier–Stokes
quations, the effect of hydrodynamics on vesicles can be reflected.

To design the energy-stable time-marching scheme, several time-dependent variables are introduced to transform
he original energy and the governing equations into equivalent forms. Based on the equivalent model, totally
ecoupled linear implicit–explicit scheme is proposed. To improve the consistency between the original energy
nd its modified (numerical) version, a simple correction technique is presented. In each time step, the corrected
nergy dissipation property can be easily estimated. It is worth noting that the computational efficiency of the
roposed scheme is comparable to that of typical semi-implicit schemes which do not satisfy the energy dissipation
aw. We do not need additional computational costs to have the decoupling of different variables. By modifying the

omentum equation with a simple immersed boundary-type penalty term, the proposed method is also practical to
imulate multiple vesicles flowing through irregular domains.

The rest parts of this work are organized as follows. In Section 2, we introduce the mathematical model of
he hydrodynamically coupled multiple vesicles system. The equivalent forms and consistently energy-stable linear
cheme are presented in Section 3. In Section 4, extensive numerical simulations are performed to validate the

erformance of our method. The conclusions are drawn in Section 5.
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2. Hydrodynamically coupled multiple vesicles model

In this section, we first introduce the derivation of multiple vesicles model based on the phase-field theory in
ection 2.1. To describe the evolution of fluid flow, the incompressible Navier–Stokes (NS) equations are adopted

n Section 2.2. By adding convection and surface tension into the phase-field equation and momentum equation,
e obtain the coupled multiple fluid vesicles system (governing equations). In Section 2.3, the associated energy
issipation property of the coupled system is estimated. In the next section, the temporal discretization of the
overning equations will be introduced in detail.

.1. Derivation of multiple vesicles model

Based on the preliminary ideas of phase-field modeling for lipid vesicles [5,29,30], the zero level-sets of multiple
hase-field functions (order parameters φi , i = 1, 2, . . . , N ) are used to represent the membranes of multiple
esicles. Inside the vesicle and in the exterior region (ambient liquid), we let φi = 1 and −1, respectively.
o achieve a smooth transition across the phase interface (membrane), the phase-field functions are defined as
i = tanh(di/(

√
2ϵ)), where di is the signed distance function between the interface and any arbitrary spatial

position. The thickness of the interfacial transition is affected by a small positive constant ϵ. For most phase-
field equations, the governing equations are obtained from a total free energy functional. Each term in the energy
functional plays a role of specific physical constraint and the minimization of energy decides the evolutionary
dynamics of the solution. For the multiple vesicles with closed membrane structures, the minimization of the
elastic bending energy reflects the decrease of the mean curvature of each membrane. In a two-dimensional or
three-dimensional domain Ω , the elastic bending energy is defined as [31,32]

Eelastic(φ) =

N∑
i=1

∫
Γi

κH 2
i ds, (1)

where φ = (φ1, φ2, . . . , φN ), x is the spatial variable, Γi is the i th membrane surface, κ is the bending
rigidity, and H is the mean curvature of the i th membrane surface. With the definition of local equilibrium state
(i.e., φi = tanh(di/(

√
2ϵ))), we have the equality 0.25(φ2

i − 1)2
= 0.5ϵ2

|∇φi |
2. The mean curvature is defined as

Hi = ∇ · (∇φi/|∇φi |), and it can be expanded to be

Hi = ∇

(
1

|∇φi |

)
· ∇φi +

∆φi

|∇φi |
= ∇

( √
2ϵ

1 − φ2
i

)
· ∇φi +

∆φi

|∇φi |

=
2
√

2ϵφi |∇φi |
2

(1 − φ2
i )2

+
∆φi

|∇φi |
=

√
2φi

ϵ
+

√
2ϵ∆φi

(1 − φ2
i )2

=

√
2

ϵ(1 − φ2
i )

(
ϵ2∆φi − φ3

i + φi
)
.

With a regularized Dirac delta function δ(φi ) = 3(φ2
i − 1)2/(4

√
2ϵ) [33], the elastic bending energy can be recast

to be

Eelastic(φ) =

N∑
i=1

∫
Ω

κH 2
i δ(φi ) dx =

3κ

2
√

2ϵ3

N∑
i=1

∫
Ω

(
ϵ2∆φi − φ3

i + φi
)2

dx

=
3κ

2
√

2ϵ5

N∑
i=1

∫
Ω

(∆φi − f (φi ))2 dx, (2)

where f (φi ) = F ′(φi ) = (φ3
i − φi )/ϵ2 and F(φi ) = (φ2

i − 1)2/(4ϵ2). Let the bending rigidity be κ =
√

2ϵ6/3, the
nal version of the elastic bending energy is

Eelastic(φ) =

N∑
i=1

∫
Ω

ϵ

2
(∆φi − f (φi ))2 dx. (3)

The minimization of Eq. (3) corresponds to the decrease of the mean curvature of each membrane.
The conservation of surface area is a fundamental physical property of vesicle. Let the area function of the i th

vesicle be [18]

A(φi ) = ϵ

∫ (
1
|∇φi |

2
+ F(φi )

)
dx,
Ω 2
3
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Fig. 1. Schematic illustration of multi-component fluid vesicles.

where the linear term |∇φi |
2 contributes to the diffusion of the interface and the nonlinear term F(φi ) accounts for

the separation of liquids inside and outside the membrane. The competition between diffusion and separation leads
to the formation of a limited diffuse thickness across the membrane interface. Let the initial surface area of the i th
vesicle be Bi = A(φi |t=0). To preserve surface area, we introduce the following penalty energy:

Earea(φ) =

N∑
i=1

M
2
(A(φi ) − Bi )

2 . (4)

Here, M > 0 is a penalty constant. The magnitude of convergence between A(φi ) and its initial area Bi is reflected
y the value of M . The minimization of Eq. (4) indicates the conservation of surface area.

Due to the impenetrability of the membrane, penetration is not allowed when multiple vesicles are close to each
ther. To suppress overlap between vesicles, we introduce the following adhesion potential energy:

Eadhesion(φ) = −

∫
Ω

N∑
i, j=1,i< j

Ci j

2ϵ
(φ2

i − 1)(φ2
j − 1) dx. (5)

ere, Ci j = C j i > 0 influences the magnitude of the adhesion force. The schematic illustration of multiple fluid
esicles is shown in Fig. 1. In the bulk phases of the vesicle and ambient liquid, the adhesion energy is absent
ecause φi = 0 or φ j = 0. When an overlap between bulk phases occurs, the adhesion energy is close to zero
ecause φi → 0 or φ j → 0. When vesicles adhere to each other, Eq. (5) takes its minimum value. Therefore, the
inimization of this energy leads to vesicles adhesion.
By combining Eqs. (3)–(5) together, the total free energy functional of the multiple vesicles system reads as

E(φ) = λ

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

∫
Ω

ϵ

2
(∆φi − f (φi ))2 dx  

I

+

N∑
i=1

M
2

(A(φi ) − Bi )2

  
II

−

∫
Ω

N∑
i, j=1,i< j

Ci j

2
(φ2

i − 1)(φ2
j − 1) dx  

III

⎞⎟⎟⎟⎟⎟⎠ ,
(6)

where λ > 0 is a scaling parameter. Because E(φ) is a functional with respect to each φi , the governing equation
of φi can be derived based on the energy variational principle. To do this, we first define the chemical potential of
the i th vesicle as µi = δE(φ)/δφi , where δ represents the variational derivative operator. Let E(φ) be a functional
with respect to function φ, ψ be an arbitrary smooth function and l be a small variation. The variational equality
can be defined as

lim
E(φ + lψ) − E(φ)

=

∫
δE(φ)

ψ dx. (7)

l→0 l Ω δφ

4
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Let us consider three typical forms of energy functional: E1(φ) =
∫
Ω

1
2 |∇φ|

2 dx, E2(φ) =
∫
Ω

1
2 |∆φ|

2 dx, and
E3(φ) =

∫
Ω N (φ) dx, where N (φ) is a general nonlinear functional. It can be observed that the total free energy

Eq. (6) is a combination of the aforementioned three functionals. For convenience, we only present the calculations
of variational derivative of E1(φ), E2(φ), and E3(φ). The calculation of δE(φ)/δφi is straightforward. By substituting

1(φ) into Eq. (7), we have

lim
l→0

1
l

∫
Ω

[
1
2
|∇(φ + lψ)|2 −

1
2
|∇φ|

2
]

dx

= lim
l→0

1
l

∫
Ω

[
1
2
∇(φ + lψ) · ∇(φ + lψ) −

1
2
∇φ · ∇φ

]
dx

= lim
l→0

1
l

∫
Ω

(
l∇φ · ∇ψ +

l2

2
∇ψ · ∇ψ

)
dx

=

∫
Ω

∇φ · ∇ψ dx =

∫
∂Ω

(n · ∇φ)ψ ds −

∫
Ω

(∆φ)ψ dx =

∫
Ω

δE1(φ)
δφ

ψ dx.

y considering n · ∇φ = 0 on ∂Ω , we get −
∫
Ω (∆φ)ψ dx =

∫
Ω

δE1(φ)
δφ

ψ dx. Because ψ is an arbitrary function
ith the desired regularity, the variational derivative of E1(φ) to φ reads as

δE1(φ)
δφ

= −∆φ. (8)

By substituting E2(φ) into Eq. (7), we have

lim
l→0

1
l

∫
Ω

[
1
2
|∆(φ + lψ)|2 −

1
2
|∆φ|

2
]

dx

= lim
l→0

1
l

∫
Ω

[
1
2
∆(φ + lψ) · ∆(φ + lψ) −

1
2
∆φ · ∆φ

]
dx

= lim
l→0

1
l

∫
Ω

(
l∆φ · ∆ψ +

l2

2
∆ψ · ∆ψ

)
dx

=

∫
Ω

∆φ · ∆ψ dx =

∫
Ω

(∆2φ)ψ dx =

∫
Ω

δE2(φ)
δφ

ψ dx.

hus, the variational derivative of E2(φ) to φ can be written as
δE2(φ)
δφ

= ∆2φ. (9)

y substituting E3(φ) into Eq. (7), we have

lim
l→0

1
l

∫
Ω

[N (φ + lψ) − N (φ)] dx = lim
l→0

1
l

∫
Ω

lψ
[

N (φ + lψ) − N (φ)
lψ

]
dx

=

∫
Ω

N ′(φ)ψ dx =

∫
Ω

δE3(φ)
δφ

ψ dx,

here N ′(φ) is the derivative of N (φ) to φ. The variational derivative of E3(φ) to φ can be written as
δE3(φ)
δφ

= N ′(φ). (10)

ased on the aforementioned calculations, we take the variational derivation of Eq. (6) to φi , the chemical potential
of the i th vesicle can be defined as

µi =
δE(φ)
δφi

= λ

⎡⎣ϵ(∆ − f ′(φi ))(∆φi − f (φi )) + ϵM(A(φi ) − Bi )(−∆φi + f (φi )) −

N∑
j=1, j ̸=i

Ci jφi (φ2
j − 1)

⎤⎦ , (11)

where f ′(φi ) = (3φ2
i − 1)/ϵ2. By utilizing the L2-gradient flow approach [34–36] (i.e., ∂φi

∂t = −γµi ) and the
Lagrange multiplier-type mass compensation strategy, the governing equations of the multi-component vesicles
5
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∂φi

∂t
= −γ (µi − βi ), i = 1, 2, . . . , N , (12)

µi = λ

⎡⎣ϵ(∆ − f ′(φi ))(∆φi − f (φi )) + ϵM(A(φi ) − Bi )(−∆φi + f (φi )) −

N∑
j=1, j ̸=i

Ci jφi (φ2
j − 1)

⎤⎦ , (13)

where γ is a positive constant, βi =
1

|Ω |

∫
Ω µi dx is a Lagrange multiplier related to the i th component, |Ω |

represents the total area/volume of the domain. By multiplying 1 to Eq. (12) and taking the integral operation,
it is easy to obtain the mass conservation property, i.e., d

dt

∫
Ω φi dx = 0. We define the volume of a vesicle as

V (φi ) =
∫
Ω (φi + 1)/2 dx, it is evident that V (φi ) is also conserved.

Remark 2.1. In this work, φi is an indicator function. In the interior of the i th vesicle, φi = 1. Let φi = −1
in the ambient liquid. Because the volume of a real vesicle cannot be negative, we define the inner volume
V (φi ) =

∫
Ω (φi + 1)/2 dx just for representing the volume enclosed by the diffuse interface. In actual computation,

we still adopt the global definition of total volume (i.e.,
∫
Ω φi dx) instead of V (φi ). Therefore, the definition of

V (φi ) does not affect the numerical results.

2.2. Incompressible Navier–Stokes equations

To describe the evolution of fluid flow, we herein adopt the following incompressible NS equations

∂u
∂t

+ u · ∇u = −∇ p +
1

Re
∆u, (14)

∇ · u = 0. (15)

ere, u is the velocity field. In 2D or 3D space, the velocity components are (u, v) or (u, v, w), respectively.
he pressure is p. The Reynolds number is Re. Eq. (15) is the divergence-free (incompressible) condition. The
omentum equation is obtained based on the Newton’s second law. For detailed description of numerical method

f the NS equations, please refer to [37] and references therein. If we assume u = 0 on the domain boundary ∂Ω ,
e can derive that the evolution of incompressible NS equations dissipates the kinetic energy

∫
Ω

1
2 |u|

2 dx. Because
the estimation is similar to that in Eq. (22), we omit this to keep the article short.

2.3. Coupled system and its energy dissipation property

To reflect the dynamic deformation of multiple vesicles in fluid environment, Eqs. (12) and (13) are coupled
with the incompressible NS equations. The coupled fluid vesicle system is written as

∂φi

∂t
+ ∇ · (uφi ) = −γ (µi − βi ), i = 1, 2, . . . , N , (16)

µi = λ

⎡⎣ϵ(∆ − f ′(φi ))(∆φi − f (φi )) + ϵM(A(φi ) − Bi )(−∆φi + f (φi )) −

N∑
j=1, j ̸=i

Ci jφi (φ2
j − 1)

⎤⎦ , (17)

∂u
∂t

+ u · ∇u = −∇ p +
1

Re
∆u +

N∑
i=1

µi∇φi , (18)

∇ · u = 0. (19)

The second term in Eq. (16) represents the advection of fluid on vesicles. The last term in Eq. (18) plays a role of
surface tensions. The derivation of a similar form of surface tension can refer to [38]. On all domain boundaries,
we consider the periodic or the following conditions

u| = 0, ∇φ · n| = 0, ∇∆φ · n| = 0, i = 1, 2, . . . , N ,
∂Ω i ∂Ω i ∂Ω

6
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where n is the unit outward normal vector to ∂Ω . For two functions fa and fb, their L2-inner product is defined as
( fa, fb) =

∫
Ω fa fb dx. The associated L2-norm is ∥ fa∥

2
= ( fa, fa). By following the similar estimations in [18],

we can take the L2-inner product of each term in Eq. (16) with µi for i = 1, 2, . . . , N and obtain
N∑

i=1

(
∂φi

∂t
, µi

)
+

N∑
i=1

∫
Ω

∇ · (uφi )µi dx = −γ

N∑
i=1

∥µi − βi∥
2. (20)

ere, we use
∫
Ω µi − βi dx = 0. The detailed derivation can be found in [18]. By taking the L2-inner product of

each term in Eq. (17) with ∂φi/∂t for i = 1, 2, . . . , N , we have
N∑

i=1

(
µi ,

∂φi

∂t

)
=

d
dt

E(φ). (21)

y taking the L2-inner product of each term in Eq. (18) with u, we get

d
dt

∫
Ω

1
2
|u|

2 dx −

N∑
i=1

∫
Ω

µi∇φi · u dx = −
1

Re
∥∇u∥

2, (22)

here the integration by parts, divergence-free condition (i.e., Eq. (19)),
∫
Ω u ·∇u ·u dx = 0, and

∫
Ω ∇ p ·u dx = 0

re used. These two equalities are estimated as follows∫
Ω

u · ∇u · u dx =

∫
Ω

(u v w) · u · ∇u dx

=

∫
Ω

uu
∂u
∂x

+ uv
∂u
∂y

+ uw
∂u
∂z

+ vu
∂v

∂x
+ vv

∂v

∂y
+ vw

∂v

∂z
+ wu

∂w

∂x
+ wv

∂w

∂y
+ ww

∂w

∂z
dx

=

∫
Ω

(
uu
∂u
∂x

+ vu
∂v

∂x
+ wu

∂w

∂z

)
+

(
uv
∂u
∂y

+ vv
∂v

∂y
+ wv

∂w

∂y

)
+

(
uw

∂u
∂z

+ vw
∂v

∂z
+ ww

∂w

∂z

)
dx

=

∫
Ω

u
2
∂∥u∥

2

∂x
+
v

2
∂∥u∥

2

∂y
+
w

2
∂∥u∥

2

∂z
dx =

∫
Ω

u · ∇
∥u∥

2

2
dx

=

∫
∂Ω

∥u∥
2

2
· u · n ds −

∫
Ω

∥u∥
2

2
∇ · u dx = 0,

here the velocity boundary condition and the divergence-free condition (i.e., Eq. (19)) are used. By using the same
onditions, we have∫

Ω

∇ p · u dx =

∫
∂Ω

p · u · n ds −

∫
Ω

p∇ · u dx = 0.

y combining Eqs. (20)–(22) together and using the equality
∫
Ω ∇ · (uφi )µi − µi∇φi · u dx = 0, we derive the

ollowing energy dissipation property

d
dt

EO =
d
dt

E(φ) +
d
dt

∫
Ω

1
2
|u|

2 dx = −γ

N∑
i=1

∥µi − βi∥
2
−

1
Re

∥∇u∥
2

≤ 0, (23)

here EO is the total energy, which consists of the free energy of phase-field functions and the kinetic energy.
ithout any external input of work, the aforementioned inequality indicates that the fluid flow-coupled multi-

omponent vesicle system dissipates its total energy over time. Based on this basic physical property, the equivalent
odel and its consistent algorithm will be introduced in the next section.

. Numerical solution algorithm

In this work, we aim to perform efficient and consistently energy dissipation-preserving (energy-stable) com-
utations for the fluid vesicles system. To achieve this goal, the time-dependent variables: P , q , and Q are
ntroduced to transform the original model (i.e., Eqs. (16)–(19)) into an equivalent form. Based on the equivalent
quations, the energy dissipation property of associated time-marching scheme will be straightforwardly proved.

et P = P(t) = EO + D, where D is a positive constant to make the value of P be positive. Moreover, we define

7



J. Yang and J. Kim Computer Methods in Applied Mechanics and Engineering 417 (2023) 116403

q
e

T
i
B
t

T
p
i

3

∆
s
t

S

= P/(EO + D) and Q = q(2 − q) such that the exact values of q and Q are 1. With the definitions of P , the
nergy dissipation relationship (i.e., the equality in (23)) can be recast into the following equivalent form

d P
dt

= −
P

EO + D

(
γ

N∑
i=1

∥µi − βi∥
2
+

1
Re

∥∇u∥
2

)
. (24)

he aforementioned equality holds because P = EO + D, EO + D ̸= 0, and D is independent of time. Because P
s an introduced extra variable, Eq. (24) provides an evolutionary equation for P to make the system be well-posed.
y multiplying Q ≡ 1 to some specific terms in the original model, considering the definitions of q and Q, and

aking Eq. (24) into account, the equivalent equations of the multi-phase fluid vesicles as follows:

∂φi

∂t
+ Q∇ · (uφi ) = −γ (µi − βi ), i = 1, 2, . . . , N , (25)

µi = Qλ

⎡⎣ϵ(∆ − f ′(φi ))(∆φi − f (φi )) + ϵM(A(φi ) − Bi )(−∆φi + f (φi )) −

N∑
j=1, j ̸=i

Ci jφi (φ2
j − 1)

⎤⎦ , (26)

∂u
∂t

+ Qu · ∇u = −∇ p +
1

Re
∆u + Q

N∑
i=1

µi∇φi , (27)

∇ · u = 0, (28)

Q = q(2 − q), q = P/(EO + D), (29)

d P
dt

= −
P

EO + D

(
γ

N∑
i=1

∥µi − βi∥
2
+

1
Re

∥∇u∥
2

)
. (30)

he same boundary conditions described in the previous section are used. For the new system, the energy dissipation
roperty with respect to an equivalent energy P can be clearly observed from Eq. (30) because its right hand side
s less than or equal to zero. Similar observations can be found in the work of [39].

.1. Second-order time-accurate linear scheme

Let T be the total computation time and N T be the number of time iterations. The uniform time step is defined as
t = T/N T . Let (·)n be the approximation of a specific variable at t = n∆t . In each time step, the time-marching

cheme consists of two stages. In the first stage, the second-order backward difference formula (BDF2) is adopted
o temporally discretize Eqs. (25)–(30) as

tage 1.

3φn+1
i − 4φn

i + φn−1
i

2∆t
+ Qn+1

∇ ·
(
u∗φ∗

i

)
= −γ

(
µn+1

i − βn+1
i

)
, i = 1, 2, . . . , N , (31)

µn+1
i = Qn+1λ[ϵ(∆ − f ′(φ∗

i ))(∆φ∗

i − f (φ∗

i )) + ϵM(A(φ∗

i ) − Bi )(−∆φ∗

i + f (φ∗

i ))

−

N∑
j=1, j ̸=i

Ci jφ
∗

i

(
(φ∗

j )
2
− 1

)
] +

λSa

ϵ3

(
φn+1

i − φ∗

i

)
−
λSb

ϵ
∆
(
φn+1

i − φ∗

i

)
+ ϵλSc∆

2 (φn+1
i − φ∗

i

)
, (32)

3ũn+1
− 4un

+ un−1

2∆t
+ Qn+1u∗

· ∇u∗
= −∇ pn

+
1

Re
∆u∗

+ Qn+1
N∑

i=1

µ∗

i ∇φ
∗

i , (33)

3un+1
− 3ũn+1

2∆t
= −∇

(
pn+1

− pn) , (34)

∇ · un+1
= 0, (35)

Qn+1
= qn+1 (2 − qn+1) , qn+1

= P̂n+1/(E∗

O + D), (36)

P̂n+1
− Pn

∆t
= −

P̂n+1

E∗
+ D

(
γ

N∑
∥µ∗

i − β∗

i ∥
2
+

1
Re

∥∇u∗
∥

2

)
. (37)
O i=1

8
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(

Here, (·)∗ = 2(·)n
− (·)n−1. On ∂Ω , we consider the periodic or the following boundary conditions

un+1
·n|∂Ω = 0, ũn+1

|∂Ω = 0, ∇ pn+1
·n|∂Ω = 0, ∇φn+1

i ·n|∂Ω = 0, ∇∆φn+1
i ·n|∂Ω = 0, i = 1, 2, . . . , N ,

In Eq. (32), the last three terms are added to improve numerical stability, Sa , Sb, and Sc are positive stabilization
parameters [18,38]. In Eq. (33), ũn+1 is an intermediate velocity field which does not satisfy the divergence-free
condition. In Eqs. (33) and (34), the second-order projection-type splitting strategy was used to decouple the
computations of velocity and pressure. We note that Eq. (36) is a temporally first-order accurate scheme, the resulting

n+1 is a first-order approximation to 1, i.e.,

qn+1
= q(tn+1) + C∆t = 1 + C∆t,

where C is a constant independent of the time step. From the definition of Q, we have

Qn+1
= qn+1(2 − qn+1) = (1 + C∆t)(1 − C∆t) = 1 − C2∆t2,

here Qn+1 is a second-order approximation to 1. In this sense, Eqs. (31)–(35) still maintain the second-order
ccuracy. We define a modified energy as En+1

M = P̂n+1
− D. It is worth noting that P̂n+1 computed from Eq. (37)

ight deviate from its definition (i.e., P = EO + D) when a relatively large time step is used. Thus, the computed
Qn+1 will gradually deviate from it exact value 1. This inconsistency between the numerical scheme and the original

odel definitely leads to inaccurate results. To fix this problem, we need to improve the consistency between P̂n+1

nd En+1
O + D. After the computations in stage 1, the following stage should be performed to make the necessary

orrection.

tage 2.

Pn+1
= ξo P̂n+1

+ (1 − ξo)
(
En+1

O + D
)
, ξo ∈ H, (38)

here

H =

{
ξ ∈ [0, 1]

⏐⏐⏐⏐ Pn+1
− P̂n+1

∆t
≤ −ϑn+1

(
γ

N∑
i=1

∥µn+1
i − βn+1

i ∥
2
+

1
Re

∥∇un+1
∥

2

)
(39)

+
P̂n+1

E∗

O + D

(
γ

N∑
i=1

∥µ∗

i − β∗

i ∥
2
+

1
Re

∥∇u∗
∥

2

)}
. (40)

et Pn+1
− D be the corrected energy. By combining Eq. (37) and the aforementioned inequality, we get

Pn+1
− Pn

∆t
≤ −ϑn+1

(
γ

N∑
i=1

∥µn+1
i − βn+1

i ∥
2
+

1
Re

∥∇un+1
∥

2

)
. (41)

o obtain the corrected energy dissipation law, i.e., Pn+1
≤ Pn , it is clear that ϑn+1 should be non-negative. For

he set H, we can easily check that it is not empty because ξ = 1 ∈ H. By rewriting Eq. (38) with the inequality
n (40), we have

ξo

(
P̂n+1

−
(
En+1

O + D
))

≤ P̂n+1
−
(
En+1

O + D
)
− ∆tϑn+1

(
γ

N∑
i=1

∥µn+1
i − βn+1

i ∥
2
+

1
Re

∥∇un+1
∥

2

)

+
∆t P̂n+1

E∗

O + D

(
γ

N∑
i=1

∥µ∗

i − β∗

i ∥
2
+

1
Re

∥∇u∗
∥

2

)
. (42)

Based on the aforementioned inequality, four possible choices of ξ0 and ϑn+1 are listed as follows:
a) If P̂n+1

= En+1
O + D, ξo is set to be zero and

ϑn+1
=

P̂n+1
(
γ
∑N

i=1 ∥µ∗

i − β∗

i ∥
2
+

1
Re ∥∇u∗

∥
2
)

(
E∗

+ D
) (
γ
∑N

∥µn+1
− βn+1

∥2 +
1

∥∇un+1∥2
) ;
O i=1 i i Re

9
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(

(

a
ϑ

o
c
s
i
e
t
t
i
H

c
(
i
s
b

(b) If P̂n+1 > En+1
O + D, ξo is set to be zero and

ϑn+1
=

P̂n+1
−
(
En+1

O + D
)

∆t
(
γ
∑N

i=1 ∥µn+1
i − βn+1

i ∥2 +
1

Re ∥∇un+1∥2
)

+

P̂n+1
(
γ
∑N

i=1 ∥µ∗

i − β∗

i ∥
2
+

1
Re ∥∇u∗

∥
2
)

(
E∗

O + D
) (
γ
∑N

i=1 ∥µn+1
i − βn+1

i ∥2 +
1

Re ∥∇un+1∥2
) ;

c) If P̂n+1 < En+1
O + D and

P̂n+1
−
(
En+1

O + D
)
+

∆t P̂n+1

E∗

O + D

(
γ

N∑
i=1

∥µ∗

i − β∗

i ∥
2
+

1
Re

∥∇u∗
∥

2

)
≥ 0,

ξo is set to be zero and ϑn+1 takes the aforementioned value in (b).
d) If P̂n+1 < En+1

O + D and

P̂n+1
−
(
En+1

O + D
)
+

∆t P̂n+1

E∗

O + D

(
γ

N∑
i=1

∥µ∗

i − β∗

i ∥
2
+

1
Re

∥∇u∗
∥

2

)
< 0,

ϑn+1 is set to be zero and

ξo = 1 −

∆t P̂n+1
(
γ
∑N

i=1 ∥µ∗

i − β∗

i ∥
2
+

1
Re ∥∇u∗

∥
2
)

(
E∗

O + D
) (

En+1
O + D − P̂n+1

) .

In most choices, ξo = 0 means Pn+1 strictly equals to En+1
O + D. In the last case, Pn+1 is an appropriate

approximation to En+1
+ D because ξo still locates at [0, 1]. After the correction in stage 2, the consistency is

improved. Several numerical simulations in Section 4 will show the significance of this correction technique.

Remark 3.1. In this remark, we interpret the physical meanings of the four cases: (a)–(d) in stage 2. First, the
possible choices of ξo and ϑn+1 should satisfy the inequality (42). Moreover, we notice that P̂n+1, En+1

O + D,
nd ∆t P̂n+1

E∗
O +D

(
γ
∑N

i=1 ∥µ∗

i − β∗

i ∥
2
+

1
Re ∥∇u∗

∥
2
)

on the right-hand side of inequality (42) are independent of ξo and
n+1. Therefore, the relationships between these three quantities are natural criteria for choosing possible values
f ξo and θn+1. In case (a), P̂n+1

= En+1
O + D indicates that the modified energy calculated from stage 1, the

orrected energy, and the original energy are strictly consistent. Thus, correction is not required and we can directly
et ξo = 0. The specific choice of ϑn+1 in case (a) eliminates the last two terms in inequality (42). The original
nequality relationship still holds because it degenerates into P̂n+1

= En+1
O + D. In case (b), when the modified

nergy is large than the original energy (i.e., P̂n+1 > En+1
O +D), the specific choice of ϑn+1 in case (b) eliminates all

he right-hand side terms in inequality (42). To satisfy this inequality relationship, we should set ξo = 0 to eliminate
he left-hand side. Thus, the corrected energy strictly equals to the original energy. In case (c), the modified energy
s less than the original energy (i.e, P̂n+1 < En+1

O + D), which makes the left-hand side of (42) be non-positive.
ere, the approximate energy dissipate rate is γ

∑N
i=1 ∥µ∗

i −β∗

i ∥
2
+

1
Re ∥∇u∗

∥
2. Case (c) indicates that the difference

between the modified energy and the original energy plus the energy dissipate rate multiplying ∆t is non-negative.
However, the third term on the right-hand side of inequality (42) is non-positive. It is generally not trivial to judge
if the signs of the right-hand side and the left-hand side are the same. To satisfy inequality (42), the simplest
approach is to set a specific ϑn+1 in case (c) to eliminate all terms on the right-hand side, and set ξo to enforce
onsistency between the corrected energy and the modified energy. In case (d), the right-hand side of inequality
42) is strictly negative and the left-hand side is non-positive. For this case, simply setting ξo cannot satisfy the
nequality relationship. For convenience, we directly set ϑn+1

= 0 to eliminate the third term on the right-hand
ide. The specific choice of ξo in this case not only satisfies ξo ∈ (0, 1) but also satisfies the inequality relationship
ecause (42) becomes an equality in the form of 0 = 0.
10
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3.2. Time-discretized energy property

In this subsection, we estimate the corrected energy dissipation law by proving the following theorem.

heorem. The solutions computed by stage 1 and stage 2 unconditionally dissipate the corrected energy in time,
.e., Pn+1

≤ Pn for any ∆t .

Proof. By recasting Eq. (37), we get

P̂n+1
= Pn

/[
1 +

∆t
E∗

O + D

(
γ

N∑
i=1

∥µ∗

i − β∗

i ∥
2
+

1
Re

∥∇u∗
∥

2

)]
. (43)

From the aforementioned expression, we have P̂1
≥ 0 with the initial setting P0

≥ 0. With ξo ∈ [0, 1] and
E1

O + D ≥ 0, we derive P1
≥ 0 from Eq. (38). By induction, Pn

≥ 0 and P̂n+1
≥ 0 can be obtained. Thus,

Eq. (37) indicates that

P̂n+1
− Pn

∆t
= −

P̂n+1

E∗

O + D

(
γ

N∑
i=1

∥µ∗

i − β∗

i ∥
2
+

1
Re

∥∇u∗
∥

2

)
≤ 0.

his inequality denotes that P̂n+1 is consistently less than or equal to Pn . From Eq. (38), we have Pn+1
≥ 0

ecause P̂n+1 and E∗

O + D are non-negative. This conclusion indicates the lower boundedness of the corrected
nergy Pn+1

− D. Based on preliminary discussions, the inequality (41) indicates that Pn+1
≤ Pn . Because D is a

onstant independent of time, the dissipation law of corrected energy has been proved. □

.3. Implementation in each time step

In this subsection, we discuss the numerical implementation of our proposed scheme in one time step. In stage
, we observe that φn+1

i , pn+1, ũn+1, and un+1 are totally decoupled in time because Qn+1 can be first calculated
rom Eq. (36). To perform the calculations described in Eq. (36), P̂n+1 is calculated using Eq. (37) (i.e., Eq. (43)).

To update φn+1
i , we can substitute µn+1

i and βn+1
i =

1
|Ω |

∫
Ω µ

n+1
i dx in Eq. (31) with the expression of

n+1
i in Eq. (32). By utilizing the mass conservation property, the integration by parts, and the aforementioned
oundary conditions for φn+1

i and ∆φn+1
i , we can eliminate the non-local terms: 1

|Ω |

∫
Ω

Saλ
ϵ3 (φn+1

i − φ∗

i ) dx,
1

|Ω |

∫
Ω

Sbλ
ϵ
∆(φn+1

i − φ∗

i ) dx, and 1
|Ω |

∫
Ω ϵScλ∆

2(φn+1
i − φ∗

i ) dx in actual computations.
With the computed ũn+1, we can obtain the following pressure Poisson equation by taking the divergence

operation to Eq. (34)

∆pn+1
= ∆pn

+
3

2∆t
∇ · ũn+1

, (44)

where the time-discretized divergence-free condition (i.e., Eq. (35)) is used. By solving this Poisson equation with
a linear multigrid method [37], the updated pn+1 can be obtained.

Finally, we can directly obtain Pn+1 through a correction step in stage 2. To facilitate the interested readers, we
summarize the numerical implementation in Algorithm 1.

In each time step, Algorithm 1 completes the step-by-step computations. The implementation is efficient because
the calculations are linear and decoupled. Because the BDF2-type scheme requires the information at previous two
time steps, the first-order backward Euler-type scheme [38] was adopted to perform the computations at t = ∆t .

4. Numerical experiments

The previous section only focused on the description of the time-marching algorithm because the energy law
in the fully discrete form can be similarly obtained as long as the discrete integration by parts is appropriately
defined. In this section, various numerical simulations are performed to verify the accuracy, consistent stability,
and capability of our method. The finite difference method [40–42] is adopted to discretize the equations in space.
Unless otherwise specified, the 2D domain is Ω = (0, 2π ) × (0, 2π ). Let Re = 1, C = 2e4, ϵ = 0.05, γ = 0.05,
i j

11
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Algorithm 1: Pseudocode of numerical implementation in each time step
Data: Input the computed information at n-th and (n − 1)-th time steps

1 Explicitly compute P̂n+1 and Qn+1 from Eqs.(37) and (36), respectively;
2 Update φn+1

i and µn+1
i by solving Eqs. (31) and (32) with a multigrid algorithm;

3 while residual > tolerance do
4 (φn+1,m+1

i,k , µ
n+1,m+1
i,k ) = Multigrid-cycle(k, φn+1,m

i,k , µ
n+1,m
i,k , sn

a , sn
b , v);

5 ⋆ Here, m and m + 1 indicate the solutions before and after one multigrid cycle, k is the multigrid
level, sn

a and sn
b are the source terms in Eqs. (31) and (32), v is the number of relaxation;

6 end
7 Update ũn+1 from Eq. (33) with an iteration algorithm;
8 while residual > tolerance do
9

( 3
2∆t −

1
Re∆

)
ũn+1

=
4un

−un−1

2∆t − Qn+1u∗
· ∇u∗

− ∇ pn
+ Qn+1∑N

i=1 µ
∗

i ∇φ
∗

i ;
10 end
11 Update pn+1 from Eq. (44) with a multigrid algorithm;
12 while residual > tolerance do
13 pn+1,m+1

k = Multigrid-cycle(k, pn+1,m
k , sn

p, v);
14 ⋆ Here, m and m + 1 indicate the solutions before and after once multigrid cycle, k is the multigrid

level, sn
p = ∆pn

+
3

2∆t ∇ · ũn+1 is the source term, v is the number of relaxation;
15 end
16 Update the divergence-free velocity un+1 from Eq. (34) in an explicit manner;
17 Correct the energy from Pn+1

= ξo P̂n+1
+ (1 − ξo)(En+1

O + D);
Result: Output the updated information at (n + 1)-th time step

Table 1
L2-errors and convergence rates for the solutions of φi (i = 1, 2) and velocities.

∆t 32δt 16δt 8δt 4δt 2δt

φ1: 8.61e−7 2.22e−7 5.73e−8 1.41e−8 2.89e−9
Rate 1.96 1.95 2.02 2.29
φ2: 8.51e−7 2.21e−7 5.74e−8 1.42e−8 2.90e−9
Rate 1.94 1.94 2.02 2.29
u: 6.69e−6 1.56e−6 3.28e−7 7.29e−8 1.42e−8
Rate 2.10 2.24 2.17 2.36
v: 6.73e−6 1.58e−6 3.30e−7 7.33e−8 1.42e−8
Rate 2.09 2.26 2.17 2.36

M = 1e4, λ = 2e−3, and D = 100 for the simulations. In Sections 4.1–4.7, all variables along x-direction are
periodic. On the top and bottom boundaries, zero-Neumann and no-slip boundary conditions are used for scalar
variables and velocities, respectively.

4.1. Temporal accuracy test

In the first test, we verify the accuracy in time by refining the time step. In a 2D space, the initial conditions
of two adjacent hydrodynamically coupled vesicles are defined in Appendix. We set the mesh size as 128 × 128,
Sa = Sb = 4, and Sc = 1. To conduct quantitative comparison of accuracy, numerical reference solutions are
obtained by using a finer time step of δt = 0.01h2, where h = π/64 is the spatial step. The coarsest time step is
set to be 32δt . By refining the time step by a factor of two, a set of numerical solutions with different time steps at
t = 128δt are obtained. The L2-norm of errors between the numerical and reference solutions is listed in Table 1.
The results indicate that the proposed scheme indeed achieves temporally second-order accuracy for the solutions
of φ (i = 1, 2) and velocities.
i
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Fig. 2. Two adjacent fluid flow-coupled vesicles. The initial state, final state (t = 180), and velocity field are shown in (a), (b), and (c).
he evolutions of Q, area ratio, and volume ratio are plotted in (d)–(f).

.2. Energy dissipation law and consistency

Using the identical initial conditions and parameters as in the previous subsection, we herein investigate the
volutionary dynamics of energy curves under different time steps: ∆t = 0.01, 0.005, 0.0025, and 0.00125. Fig. 2(a)
isplays the initial state of two adjacent vesicles, with a zero initial velocity field. In this test, circular initial shapes
re considered. Note that the circular initial state has been used to simulate the tumor cell flowing through a tube [43]
nd the elastic membrane in contact with solid [44]. In Fig. 2(b), the snapshot of two vesicles at t = 180 is shown.
ere, the interfaces are represented by the zero level-set of φi , that is, φi = 0 (i = 1, 2). Due to the effect of

dhesion potential, we observe that two vesicles adhere to each other. Fig. 2(c) plots the interfacial profiles and
he velocity field at t = 180 with respect to ∆t = 0.01. The equal contribution of surface tension leads to the
ymmetric distribution of velocities. In Fig. 2(d)–(f), the evolutions of Q, area ratio |A(φn

i ) − A(φ0
i )|/A(φ0

i ), and
volume ratio |V (φn

i ) − V (φ0
i )|/V (φ0

i ) (i = 1, 2) are plotted, respectively. The results indicate that both area and
volume are approximately conserved.

For the auxiliary variable Q, its exact value is 1. Therefore, we can multiply Q to some terms in equivalent
system (i.e., Eqs. (25)–(28)) without changing the original dynamics. In actual computation, we cannot expect the
numerical value of Q is strictly equal to 1 because the numerical computations only leads to approximate results.
An appropriate numerical approximation of Q requires its numerical value should be close to 1. On the contrary, if
the numerical value of Q deviates away from 1, the numerical method cannot accurately solve the original problem
because the consistency between the original model and the equivalent model has been destroyed. In Fig. 2(d), the
y-range represents the numerical value of Q. As we can observe, the numerical result is close to the exact solution
(i.e., Q = 1). This also indicates that the proposed method achieves good consistency between the original model
and the equivalent model.
13
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Fig. 3. Energy curves of original energy, modified energy, and corrected energy with respect to different time steps.

In the early stages of Fig. 2(d), a minor decrease in the numerical value of Q can be observed. For this
phenomenon, we give the following two possible explanations: (i) The initial settings of velocity and pressure
are artificial, which might not fit the real physical environment; (ii) The first-order accurate Euler scheme is used
to perform the computation in the first time step. From the second time step, the BDF2 scheme works. Therefore,
the difference between two temporal discretizations might cause a slight effect in the early stages. Although there
is a slight fluctuation at early stage, the numerical value of Q and its exact result 1 are still highly consistent.

Fig. 3 shows the energy curves of the original energy, modified energy, and corrected energy with respect to
different time steps. In each figure, the inset displays a local close-up view. Comparing with the difference between
the original energy and the modified energy, it can be observed that the corrected energy and the original energy
are highly consistent. This test indicates that the adopted correction technique indeed improves the consistency. In
each case, the energy curves are dissipative over time.

To emphasize the necessity of the correction technique, we consider the same simulation with a relatively large
time step of ∆t = 0.01. The computations are performed until t = 180. Fig. 4(a) shows the interfacial profiles
computed by both the method with and without correction technique. It is clear that the two vesicles do not adhere
closely to each other if the correction technique is absent. To illustrate this, we also plot the evolution of Q in
Fig. 2(b). For the simulation with the absence of correction, we observe that Q deviates significantly from its exact
value 1. This indicates that the consistency between the original model and the equivalent model has been destroyed
and the resulting simulation is not accurate. The blue line with open circles in Fig. 4(b) corresponds to the result in
14
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Fig. 4. Effect of correction technique. The interfacial profiles at t = 180 are shown in (a). The evolutions of Q are plotted in (b). The
bsolute error between Q and 1 is shown in (c). (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

ig. 2(d). When we plot the results with and without correction together, the slight drop of Q in Fig. 2(d) is hard
o be observed. We also plot the absolute error |Q − 1| in Fig. 4(c). As we can see, the correction algorithm makes
he absolute error between Q and 1 be less than 1e−6. To obtain accurate results with a relatively large time step,
he correction technique is necessary.

During early stages of evolution, we observe a sharp change in the energy curve and a slight drop in the value
f Q. In our present simulations, the uniform time step ∆t = 0.01 is used. To investigate the effect of the time
tep on the evolution of Q, we adopt the following adaptive time-stepping strategy based on energy changes [45]

∆tn+1
= max{∆min, ∆tmax/(1 + νE ′

O )}, (45)

here ∆tmin and ∆tmax are the minimum and maximum time steps, E ′

O = (En
O − En−1

O )/∆tn is the discrete time
erivative of the total energy, ν = 0.01 is a constant. Here, we set ∆tmax = 0.01 and ∆tmin = 0.001. The same
imulation as shown in Fig. 2 is performed. The evolutions of Q with respect to uniform and adaptive time steps
re plotted in Fig. 5. We observe that the difference is not obvious. The results indicate that the uniform time step
t = 0.01 is an appropriate choice in this test. The resulting difference can be ignored because Q is highly close
o its exact value 1.
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Fig. 5. Time evolutions of Q with respect to uniform time step and adaptive time step.

Fig. 6. Effect of penalty potential. In each figure, the inset shows the snapshot of φi (i = 1, 2) at t = 180.

4.3. Effect of penalty potential

Area conservation is a basic property of lipid vesicles. The phase-field model introduces a penalty term to
approximately satisfy the conservation of area. To test the effect of the penalty potential, we simulate the behavior
of two separated vesicles within a fluid environment. The initial conditions are defined in Appendix. In this
test, the rugby-like initial shapes are considered. This initial condition has been extensively adopted in previous
researches [7,8,11,29,30] to evolve a final red blood cell-like membrane. The mesh size 128 × 128 is used. The
ime step is ∆t = 0.01. Fig. 6 shows the evolution of the area ratio: |A(φn

i ) − A(φ0
i )|/A(φ0

i ) (i = 1, 2) with respect
o M = 1e4 and M = 0. Here, M = 0 indicates that the penalty potential is absent. In each figure, the inset shows
he snapshot of the two vesicles at t = 180. From the results, we observe that M = 0 leads to non-conservative
reas and φi does not evolve into a lipid vesicle-like shape. For M = 0, the relative error of surface area reaches
n order of 0.07. On the contrary, the area conservation is approximately satisfied if M = 1e4 is used because the
rder of relative error is less than 3e−4. This comparison indicates that the evolution with M = 0 only associates
ith the minimization of interfacial curvature. A large value of penalty parameter is necessary to approximately
reserve the surface area.

.4. Two-phase vesicles with various initial shapes

In this subsection, we investigate the dynamic deformation of two-component vesicles by setting different initial
hapes. The initial values of velocity field and pressure are zero. The initial conditions of six cases are defined in
16
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Appendix. In this test, the reason of setting different initial shapes is to investigate the dynamic deformations under
the combined effects of elastic bending, area-conservation constraint, and adhesion potential. In a recent work, Hu
et al. [46] observed different evolutionary dynamics by defining various initial shapes for Willmore flow. We use
∆t = 0.01 and mesh size 128 × 128 to perform the simulations. In Fig. 7, the evolutions of area ratio with respect
to different initial states are plotted. The insets display the snapshots of two vesicles at different moments. Due to
the effect of adhesion potential, the vesicles eventually adhere to each other. In these processes, the conservation of
surface area is approximately satisfied. During early stages of cases 1–5 in Fig. 7, the membranes evolve in time.
Thus, we can observe the slight fluctuation of relative errors, even though the errors are relatively small. In the late
stages of cases 1–5, we observe that the curves of relative errors become approximately flat and the changes of
membranes are not clear. The results indicate that the curve of relative error can be used as an indicator to judge
if a membrane reaches the steady state. Because the initial shapes in case 6 are irregular, this case might need a
relatively long time to reach the steady state. Therefore, we find that the curves of relative errors do not become
flat in the same time range.

In Fig. 8(a) and (b), the original energy and the corrected energy with respect to different cases are plotted. It
can be observed that the energy dissipation laws are satisfied for each case. In Fig. 8(c), we draw the evolutions
of difference between the original and modified energies, i.e., |En

O − En
M |. The differences between the original

and corrected energies are not plotted because they are within the limits of machine error. The evolutions of Q are
plotted in Fig. 8(d), the results indicate the good consistency for each case. Because the modified energy and the
original energy are not consistent, the obvious drop of energy at early stage will lead to the increase of difference
between the original and modified energy values. Therefore, larger values of error can be observed at early stages.
As time evolves, the energy changes become more stable, which leads to a reduction of errors during the later
stages.

4.5. Two-components vesicles under shear flow

Shear flow is a typical fluid environment for investigating the dynamic deformation of vesicles. Under the
effects of shear forces and low Reynolds numbers, vesicles undergo tank-treading deformations [7]. This flow-
driven deformation is useful in drug transportation due to the changes of interfacial dynamics. Relevant numerical
simulations and real experiment validations can be found in [47,48]. In this subsection, the deformation of two
vesicles in shear flow is simulated. On the top and bottom boundaries, the velocity boundary conditions are set to
be

u|y=0 = −U, u|y=2π = U, v|y=0 = v|y=2π = 0.

The initial conditions are defined in Appendix. We use ∆t = 0.01, U = 0.1, and the mesh size 128 × 128. The
snapshots of shear flow-driven deformation of vesicles are shown in Fig. 9. The interfaces are represented by the
zero level-set of φi (i = 1, 2). At each specific moment, the streamline is also plotted. Under the combined effects

f shear flow and adhesion potential, we observe that the two vesicles are elongated but always adhered together.
n the bottom row of Fig. 9, the evolutions of surface area ratios are plotted. It can be observed that the surface
reas are approximately conserved. In this test, the two vesicles are symmetric with respect to the central point of
he domain. Due to the same fluid parameters and the symmetric distribution of surface tension, a vortex appears
n the central position following the adhesion of the two vesicles.

.6. Three-phase vesicles with various initial shapes

In this subsection, we investigate the dynamic deformation of three-component vesicles by setting four different
nitial shapes. The initial velocities and pressure are zero. The initial conditions of four cases are defined
n Appendix. In the simulations, we use ∆t = 0.01 and the mesh size 128 × 128. The evolutions of surface

area ratios with respect to different cases are plotted in Fig. 10. In each figure, the insets show the evolutionary
snapshots of vesicles. Under the effect of adhesion forces, it can be observed that the vesicles are adhered together.
Comparing these three-phase cases to the two-phase cases in Section 4.4, we see the three-phase evolutions are
delayed because the dynamic deformation of one vesicle is affected by the other two vesicles. In same time range,

the curves of relative errors do not become flat in most cases. In case 1, the setting is similar with case 3 in
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Fig. 7. Dynamic deformation of two vesicles. In each case, the evolutions of area ratio are plotted. The insets show the snapshots at different
moments.
18
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Fig. 8. Evolutions of original energy, corrected energy, and differences between original energy and modified energy are shown in (a), (b),
and (c). The evolutions of Q are plotted in (d).

ection 4.4. Moreover, φ1 is only affected by φ3, vice versa. Thus, we observe that the curves of relative errors
ecome approximately flat at late stage.

We plot the original energy curves and the corrected energy curves in Fig. 11(a) and (b). In Fig. 11(c), the
ifference between the original energy and the modified energy is shown. The differences between the original
nergy and the corrected energy are not plotted because they are within the limits of machine error. The energy
urves are decreasing for different cases. The results plotted in Fig. 11(d) show that Q is close to 1.

4.7. Three vesicles under shear flow

In this numerical example, we simulate the shear flow-driven deformations of three-component vesicles. The
velocity boundary conditions keep unchanged like those in Section 4.5. For the definitions of two initial conditions,
see Appendix. The evolutions with respect to the two cases are shown in Figs. 12 and 13. The initial arrangements
lead to different distribution of surface tension in space. Then, the resulting streamlines are totally different. Due to
the combined effects of adhesion force and shear flow, three vesicles are elongated and adhered. The results plotted
in Fig. 14(a) and (b) indicate that the surface areas with respect to the two cases are approximately conserved.
For case 1, three vesicles are symmetric with respect to the central point of the domain. Due to the symmetric
distribution of surface tension, a vortex can be observed in the central position (i.e., the region occupied by φ2). In
ase 2, three vesicles are not symmetric with respect to the central point of the domain. Therefore, this asymmetric
istribution of surface tension leads to the formation of vortex at the rear of second vesicle.

.8. Multiple vesicles in arbitrary domains

In biological fluid engineering, the lipid vesicles are generally restricted into irregular regions, such as the micro-

uid devices and the wavy blood vessels. Park et al. [49] investigated the transient dynamics of an elastic capsule
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o

Fig. 9. Dynamic deformations of two vesicles in shear flow. The computational moments are illustrated under each figure. The evolutions

f surface area ratios are shown in the bottom row.
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Fig. 10. Dynamic deformation of three vesicles. In each case, the evolutions of area ratio are plotted. The insets show the snapshots at
different moments.

in a constricted micro-fluid channel. Ye et al. [50] performed numerical simulation of red blood cells in a 3D tube.
Recently, Ye et al. [51] numerically designed a microfluidic chip for the red blood cells. To test the performance
of our proposed method in these fluid environments, we recast the governing equations into the following forms

∂φi

∂t
+ ∇ · (uφi (1 − Ψ )) = −γ (µi − βi ), i = 1, 2, . . . , N , (46)

µi = λ(ϵ(∆ − f ′(φi ))(∆φi − f (φi )) + ϵM(A(φi ) − Bi )(−∆φi + f (φi ))) −

N∑
j=1, j ̸=i

Ci jφi (φ2
j − 1), (47)

∂u
∂t

+ u · ∇u = −∇ p +
1

Re
∆u −

N∑
i=1

φi∇µi +
Ψ

ζ
(us − u), (48)

∇ · u = 0, (49)

where Ψ is an indicator function. In solid and fluid, we set Ψ = 1 and 0, respectively. The velocity of solid is us
and we let u = 0 to model the incompressible fluid flows past a fixed solid [52]. Here, ζ > 0 is a sufficiently small
s

21



J. Yang and J. Kim Computer Methods in Applied Mechanics and Engineering 417 (2023) 116403

a

c

O
i
s
T
a
d
d
(

o
i
p
b
m

i
a
i

Fig. 11. Evolutions of original energy, corrected energy, and differences between original energy and modified energy are shown in (a), (b),
nd (c). The evolutions of Q are plotted in (d).

onstant to reflect the permeability. The first simulation in this subsection is performed in Ω = (0, 4π ) × (0, 2π ).
We define the values of Ψ of a restricted channel as follows

Ψ (x, y) =

⎧⎨⎩1 if x ∈ [1.3π, 2.7π ] and y > 1.4π,
1 if x ∈ [1.3π, 2.7π ] and y < 0.6π,
0 otherwise.

n the top and bottom boundaries, the velocities are set to be zero. The inlet and outlet boundary conditions are
mposed on the left and right boundaries, respectively. The inlet velocity u = 0.01 sin(0.5y) is adopted. For the
calar variables, i.e., φi and p, the zero-Neumann boundary condition is used on all boundaries. We set ζ = 1e−8.
he mesh size 256 × 128 and the time step ∆t = 0.01 are used to perform the computation. The initial conditions
re defined in Appendix. Fig. 15 displays the snapshots of the three vesicles past through a restricted channel at
ifferent moments. The associated streamlines are also plotted. Under the effect of restricted flow field, the dynamic
eformations can be observed. Due to the adhesion force, three vesicles are adhered all along. In Fig. 16(a) and
b), we plot the evolutions of the surface area ratios and Q, respectively.

In this test, we observe that M = 1e4 leads to the desired conservation of surface area. Therefore, the increase
f M might not lead to the formation of parachute-like shapes of vesicles. Because the phase-field vesicle model
s sensitive to interfacial parameters, we herein perform the simulation with ϵ = 0.05 and mesh size 512 × 256. In
resent mesh size, ϵ = 0.05 represents that the diffuse interface occupies more grids, see [53] for the relationship
etween ϵ and mesh grid. To reduce the mobility, we choose λ = 1e−4. In Fig. 17, the snapshots at specific
oments are shown. When the vesicles flow through the restricted channel, they evolve to parachute-like shapes.
In the second simulation, we consider three vesicles flowing through a micro-vessel stenosis [54]. The full domain

s Ω = (0, 4π )×(0, 2π ). The initial conditions of three vesicles are defined in Appendix. The inlet velocity is defined
s u = 0.01 sin(0.5y). We use ∆t = 0.01, ζ = 1e−8, λ = 1e−3, and mesh size 256 × 128. The snapshots of
nterfacial profiles (i.e., φ = 0 (i = 1, 2, 3)) and streamline at different moments are displayed in Fig. 18. Because
i
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Fig. 12. Dynamic deformations of three vesicles (case 1) in shear flow. The computational moments are illustrated under each figure.

the vesicles represented by φ2 and φ3 are adhered together, the evolutionary dynamics in narrow channel is delayed.
e can observe that the vesicle represented by φ1 fast flows through the channel. In the late stage, three vesicles

re adhered to each other because of the effect of adhesion force. The evolution of Q is plotted in the bottom row
f Fig. 18. When fluid flows through the narrow channel, the velocity at the left inlet will become fast. The first
esicle (i.e., φ1) are fast convected into the channel. The last two vesicles adhere together and simultaneously flow
hrough the narrow channel, their velocity cannot be faster than that of the first vesicle. Therefore, we observe that
2 and φ3 always locate behind φ1 in the narrow channel.

It is worth noting that the membrane of a vesicle is only mathematically represented by the zero level-set of
i , the diffuse interface still has a measurable thickness. Although the penalty term −

∑N
j=1, j ̸=i Ci jφi (φ2

j − 1) can
revent the obvious penetration of φi into φ j in their bulk phases (i.e., φi = 1 and φ j = 1), the interfacial motion

inside the diffuse interface region will lead to the overlap between φi = 0 and φ j = 0 (i ̸= j). When the advection
is not dominant or the system is in steady state, we can expect the zero level-set of each vesicle intersects at a
same position. Fig. 19(a) and (b) schematically illustrates the 1D profiles of two vesicles in equilibrium state and in

advection-dominated environment, respectively. This explains why the overlaps at specific moments can be observe
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Fig. 13. Dynamic deformations of three vesicles (case 2) in shear flow. The computational moments are illustrated under each figure.

in Fig. 18. A natural approach for reducing overlap is to refine the mesh grid. Fig. 20 shows the results with mesh
size 512 × 256. With a finer mesh size, the thickness of diffuse interface becomes thinner. Therefore, we do not
observe the obvious overlap between φ2 and φ3.

The last example in this subsection aims to simulate the four-component vesicles flowing through a wavy channel.
The full domain is Ω = (0, 4π ) × (0, π). The solid region is defined by using the following two functions in
x ∈ [0.2π, 3.8π ]

y = 0.2
√

x/π sin(3x) + 0.75π, y = 0.04(x/π )2 cos(2x) − 0.08 sin(8x) + 0.3π.

he initial conditions of four adjacent vesicles are defined in Appendix. Fig. 21 shows the dynamic deformations at
ifferent moments. Due to the adhesion force, four vesicles are closely adhered. The evolution of Q is plotted in the
ottom row of Fig. 21. When the vesicles flows through the narrowest region, we observe that the difference between

Q and 1 becomes slightly large. In numerical computation, the update of Q relies on the energy relationship. We
ote that the energy dissipation law cannot strictly hold for the tests of vesicles flowing through complex channels

ecause of the effects of inlet and outlet boundaries. Moreover, the numerical energy can also be affected in the
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Fig. 14. Evolutions of surface area ratios with respect to (a) case 1 and (b) case 2.

egion where fluid velocity changes fast, which leads to a noticeable decrease in the numerical value of Q. During
the whole process, the consistency is still satisfactory because Q is close to 1. It is worth noting that the inlet
velocity used in this test is small. Moreover, the initial circular shapes correspond to the minimization state of
elastic bending energy. Thus, we find that the vesicles do not undergo large deformations in the channel.

4.9. Fluid flow-coupled vesicles in 3D spaces

Finally, we conduct three simulations in 3D spaces to further show the performance of our method. In the first
simulation, we consider the deformation of two vesicles with the absence of external fluid flow. The 3D space is
Ω = (0, π)×(0, π)×(0, π). Along x- and y-directions, all variables are periodic. On the top and bottom boundaries,
the zero-Neumann and no-slip boundary conditions are imposed on scalar variables and velocities, respectively. The
parameters are set to be ∆t = 0.01, ϵ = 0.065, and λ = 1e−3. The initial conditions of two adjacent vesicles are
defined in Appendix. The initial velocities and pressure are zero. From Fig. 22, it can be observed that two vesicles
are gradually adhered in time. In Fig. 23(a) and (b), the evolutions of energy curves and surface area ratios are
plotted. The results denote that the energy dissipation and the approximate area conservation are satisfied in 3D
space.

In the second test, we investigate the dynamic deformations of two 3D adjacent vesicles in shear flow. The initial
velocities are

u(x, y, z, 0) = U (2z/π − 1), v(x, y, z, 0) = w(x, y, z, 0) = 0. (50)

he initial conditions of vesicles are unchanged. On the top and bottom boundaries, the following velocity conditions
re imposed

u|z=0 = −U, u|z=π = U, v|z=0 = v|z=π = w|z=0 = w|z=π = 0.

Here, U = 0.1. Fig. 24 displays the snapshots of two vesicles in shear flow. As we can see, the vesicles are elongated
and adhered together. The results plotted in Fig. 25 indicate that the surface areas are approximately conserved in
time.

The last simulation focuses on the dynamic deformation and motion of 3D vesicles flowing through a restricted
channel. The full domain size is Ω = (0, 2π ) × (0, π) × (0, π). The same parameters in the previous two 3D
simulations are used. The solid region is represented by the following indicator function

Ψ (x, y, z) =

⎧⎨⎩1 if x ∈ [0.5π, 1.5π ] and z > 0.7π,
1 if x ∈ [0.5π, 1.5π ] and z < 0.3π,

0 otherwise.
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Fig. 15. Dynamic deformations of three vesicles in a restricted channel. The computational moments are illustrated under each figure.

The left and right boundaries are the inlet and outlet boundaries for velocities. On the top and bottom boundaries,
all velocity components are zero. The zero-Neumann boundary condition is imposed for φi (i = 1, 2) and p on all
boundaries. The inlet velocity is defined as u = 0.01 sin(y) sin(z). The initial conditions of two vesicles are defined
in Appendix. The snapshots of vesicles at different computational moments are shown in Fig. 26. After the vesicles
flow through the narrow regions, it can be observed that the adhesion force make the two vesicles gradually adhere
to each other. The results plotted in Fig. 27(a) and (b) indicate the approximate conservation of surface area and
the consistency, respectively.

5. Conclusions

In this work, we simulated the fluid flow-coupled multiple vesicles with an incompressible NS phase-field penalty
model. The time-dependent variable strategy was adopted to construct linearly decoupled and energy-stable scheme.
At each time step, the solution algorithm is efficient to implement because only several linear equations needed to
be separately solved. The typical benchmark tests indicated that the proposed scheme had desired energy stability
and second-order accuracy in time. The capabilities of the model and algorithm were further validated via the
simulations of multiple vesicles in various fluid environments.
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Fig. 16. Evolutions of (a) surface area ratios and (b) Q for three vesicles past through a restricted channel.

Fig. 17. Dynamic deformations of three vesicles flowing through a restricted channel. Here, mesh size 512 × 256, ϵ = 0.05, and λ = 1e−4
are used.
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Fig. 18. Dynamic deformations of three vesicles flowing through a micro-vessel stenosis. The computational moments are illustrated under
each figure. The evolution of Q is plotted in the bottom row.
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Fig. 19. Schematic illustrations of 1D profiles of two vesicles in (a) equilibrium state and in (b) advection-dominated environment. The
shadow region represents the diffuse interface.

Fig. 20. Dynamic deformations of three vesicles flowing through a micro-vessel stenosis. Here, mesh size 512 × 256 is used.
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Fig. 21. Dynamic deformations of four vesicles flowing through a wavy channel. The computational moments are illustrated under each
figure. The evolution of Q is plotted in the bottom row.
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Fig. 22. Deformations of two adjacent vesicles in 3D space. Under each figure, the computational moments are illustrated.
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A

Fig. 23. Evolutions of (a) energy curves and (b) surface area ratios for two adjacent 3D vesicles.

ppendix

The initial conditions of Section 4.1 are defined as

φ1(x, y, 0) = tanh

(
0.2π −

√
(x − 1.22π )2 + (y − π )2

√
2ϵ

)
, (51)

φ2(x, y, 0) = tanh

(
0.2π −

√
(x − 0.78π )2 + (y − π )2

√
2ϵ

)
, (52)

u(x, y, 0) = v(x, y, 0) = p(x, y, 0) = 0. (53)

The initial conditions of Section 4.3 are defined as

φ1(x, y, 0) = tanh

(
0.25π −

√
(x − 0.67π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (54)

φ2(x, y, 0) = tanh

(
0.25π −

√
(x − 1.33π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (55)

u(x, y, 0) = v(x, y, 0) = p(x, y, 0) = 0. (56)

In Section 4.4, the initial conditions of six cases are defined as follows:
For the first case, we consider the following initial state of two adjacent elliptic vesicles

φ1(x, y, 0) = tanh

(
0.25π −

√
(x − 1.15π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (57)

φ2(x, y, 0) = tanh

(
0.25π −

√
(x − 0.85π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
. (58)

For the second case, we consider the following initial state of a big vesicle in contact with two smaller vesicles

φ1(x, y, 0) = tanh

(
0.15π −

√
(x − 1.27π )2/0.3 + (y − π )2/1.5

√
2ϵ

)

+ tanh

(
0.15π −

√
(x − 0.73π )2/0.3 + (y − π )2/1.5

√

)
, (59)
2ϵ
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Fig. 24. Deformations of two 3D adjacent vesicles in shear flow. Under each figure, the computational moments are illustrated.
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Fig. 25. Evolutions of surface area ratios for two 3D vesicles in shear flow.

φ2(x, y, 0) = tanh

(
0.3π −

√
(x − π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
. (60)

or the third case, we consider the following initial state of three elliptic vesicles with same size

φ1(x, y, 0) = tanh

(
0.25π −

√
(x − 1.28π )2/0.3 + (y − π )2/1.5

√
2ϵ

)

+ tanh

(
0.25π −

√
(x − 0.72π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (61)

φ2(x, y, 0) = tanh

(
0.25π −

√
(x − π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
. (62)

or the fourth case, we consider the following initial state of an elliptic vesicle in contact with a circular one

φ1(x, y, 0) = tanh

(
0.18π −

√
(x − π )2 + (y − 1.4π )2

√
2ϵ

)
, (63)

φ2(x, y, 0) = tanh

(
0.35π −

√
(x − π )2/1.5 + (y − π )2/0.3

√
2ϵ

)
. (64)

or the fifth case, we consider the following initial state of a big circular vesicle in contact with three smaller
esicles

φ1(x, y, 0) = tanh

(
0.15π −

√
(x − π )2 + (y − 1.47π )2

√
2ϵ

)
+ tanh

(
0.15π −

√
(x − 1.36π )2 + (y − 0.7π )2

√
2ϵ

)

+ tanh

(
0.15π −

√
(x − 0.64π )2 + (y − 0.7π )2

√
2ϵ

)
, (65)

φ2(x, y, 0) = tanh

(
0.3π −

√
(x − π )2 + (y − π )2

√
2ϵ

)
. (66)

For the last case, we consider the following initial state of two star-like vesicles

φ1(x, y, 0) = tanh

(
0.23π + 0.1 cos(6θ1) −

√
(x − 1.1π )2 + (y − 1.25π )2

√
2ϵ

)
, (67)

φ2(x, y, 0) = tanh

(
0.23π + 0.1 cos(5θ2) −

√
(x − π )2 + (y − 0.75π )2

√

)
, (68)
2ϵ
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Fig. 26. Dynamic deformations of two 3D vesicles flowing through a restricted channel. Under each figure, the computational moments are
llustrated.

here θ1 = tan−1(y − 1.25π/x − 1.1π ) for x ̸= 1.1π and θ2 = tan−1(y − 0.75π/x − π ) for x ̸= π .

In Section 4.5, the following initial conditions are used

φ1(x, y, 0) = tanh

(
0.25π −

√
(x − 1.15π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (69)

φ2(x, y, 0) = tanh

(
0.25π −

√
(x − 0.85π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (70)

u(x, y, 0) = U
( y
π

− 1
)
, v(x, y, 0) = 0, p(x, y, 0) = 0. (71)

n Section 4.6, the initial conditions of four cases are defined as follows:
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F

Fig. 27. Evolutions of (a) surface area ratios and (b) Q for two 3D vesicles flowing through a restricted channel.

For the first case, the following initial state of three elliptic vesicles with same size is used

φ1(x, y, 0) = tanh

(
0.25π −

√
(x − 1.3π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (72)

φ2(x, y, 0) = tanh

(
0.25π −

√
(x − π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (73)

φ3(x, y, 0) = tanh

(
0.25π −

√
(x − 0.7π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
. (74)

or the second case, we use the following initial state of three elliptic vesicles with different sizes

φ1(x, y, 0) = tanh

(
0.3π −

√
(x − π )2/1.5 + (y − 0.76π )2/0.3

√
2ϵ

)
, (75)

φ2(x, y, 0) = tanh

(
0.22π −

√
(x − π )2/1.5 + (y − 1.06π )2/0.3

√
2ϵ

)
, (76)

φ3(x, y, 0) = tanh

(
0.15π −

√
(x − π )2/1.5 + (y − 1.29π )2/0.3

√
2ϵ

)
. (77)

For the third case, we use the following initial state of three adjacent circular vesicles

φ1(x, y, 0) = tanh

(
0.18π −

√
(x − 1.2π )2 + (y − 0.79π )2

√
2ϵ

)
, (78)

φ2(x, y, 0) = tanh

(
0.18π −

√
(x − 0.8π )2 + (y − 0.79π )2

√
2ϵ

)
, (79)

φ3(x, y, 0) = tanh

(
0.18π −

√
(x − π )2 + (y − 1.13π )2

√

)
. (80)
2ϵ
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For the last case, we define the initial conditions of three vesicles as

φ1(x, y, 0) = tanh

(
0.25π −

√
(x − 1.28π )2/0.3 + (y − 1.2π )2/1.5

√
2ϵ

)
, (81)

φ2(x, y, 0) = tanh

(
0.25π −

√
(x − π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (82)

φ3(x, y, 0) = tanh

(
0.25π −

√
(x − 0.72π )2/0.3 + (y − 0.8π )2/1.5

√
2ϵ

)
. (83)

n Section 4.7, the initial conditions of two cases in shear flow are as follows:
The first arrangements of initial vesicles are as follows

φ1(x, y, 0) = tanh

(
0.25π −

√
(x − 0.72π )2/0.3 + (y − 1.2π )2/1.5

√
2ϵ

)
, (84)

φ2(x, y, 0) = tanh

(
0.25π −

√
(x − π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (85)

φ3(x, y, 0) = tanh

(
0.25π −

√
(x − 1.28π )2/0.3 + (y − 0.8π )2/1.5

√
2ϵ

)
. (86)

he second arrangements of initial vesicles are defined as

φ1(x, y, 0) = tanh

(
0.25π −

√
(x − 0.72π )2/0.3 + (y − 1.2π )2/1.5

√
2ϵ

)
, (87)

φ2(x, y, 0) = tanh

(
0.25π −

√
(x − π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (88)

φ3(x, y, 0) = tanh

(
0.25π −

√
(x − 1.28π )2/0.3 + (y − 1.2π )2/1.5

√
2ϵ

)
. (89)

n Section 4.8, the initial conditions of the first case are defined as

φ1(x, y, 0) = tanh

(
0.32π −

√
(x − 0.74π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (90)

φ2(x, y, 0) = tanh

(
0.32π −

√
(x − 1.12π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
, (91)

φ3(x, y, 0) = tanh

(
0.32π −

√
(x − 0.35π )2/0.3 + (y − π )2/1.5

√
2ϵ

)
. (92)

The second initial conditions in Section 4.8 are defined as

φ1(x, y, 0) = tanh

(
0.16π −

√
(x − 0.97π )2 + (y − π )2

√
2ϵ

)
, (93)

φ2(x, y, 0) = tanh

(
0.16π −

√
(x − 0.66π )2 + (y − 1.18π )2

√
2ϵ

)
, (94)

φ3(x, y, 0) = tanh

(
0.16π −

√
(x − 0.66π )2 + (y − 0.82π )2

√
2ϵ

)
. (95)

he last initial conditions in Section 4.8 are defined as

φ1(x, y, 0) = tanh

(
0.42 −

√
(x − 0.6π )2 + (y − 0.53π )2

√

)
, (96)
2ϵ
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φ2(x, y, 0) = tanh

(
0.42 −

√
(x − 1.46π )2 + (y − 0.53π )2

√
2ϵ

)
, (97)

φ3(x, y, 0) = tanh

(
0.42 −

√
(x − 2.32π )2 + (y − 0.53π )2

√
2ϵ

)
, (98)

φ4(x, y, 0) = tanh

(
0.42 −

√
(x − 3.18π )2 + (y − 0.53π )2

√
2ϵ

)
. (99)

n Section 4.9, the initial conditions of two adjacent vesicles are defined as

φ1(x, y, z, 0) = tanh

(
0.2π −

√
(x − 0.61π )2/0.3 + (y − π )2/0.3 + (z − 0.44π )2/1.5

√
2ϵ

)
, (100)

φ2(x, y, z, 0) = tanh

(
0.2π −

√
(x − 0.39π )2/0.3 + (y − π )2/0.3 + (z − 0.56π )2/1.5

√
2ϵ

)
. (101)

In Section 4.9, the last initial conditions are defined as

φ1(x, y, z, 0) = tanh

(
0.16π −

√
(x − 0.62π )2/1.5 + (y − 0.5π )2/0.3 + (z − 0.5π )2/0.3

√
2ϵ

)
, (102)

φ2(x, y, z, 0) = tanh

(
0.16π −

√
(x − 0.25π )2/0.3 + (y − 0.5π )2/0.3 + (z − 0.5π )2/1.5

√
2ϵ

)
. (103)
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