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In this study, a novel diffuse-interface (phase-field) model is developed to efficiently 
describe the dynamics of compound droplets in contact with a solid object. Based on 
a classical four-component Cahn–Hilliard-type system, we propose modified governing 
equations, in which the solid is represented by an initially fixed phase. By considering 
Young’s equality between surface tensions and microscale contact angles, equilibrium 
profiles of diffuse interfaces, and horizontal force balance between contact and interfacial 
angles, a correction term is derived and added into the phase-field equations to reflect 
the accurate contact line property for each component. The proposed model can be 
implemented on Eulerian grids in the absence of complicated treatment on the liquid-solid 
boundary. The standard finite difference method (FDM) is adopted to perform discretization 
in space. The linear second-order time-accurate method based on the two-step backward 
differentiation formula (BDF2) and a stabilization technique are adopted to update the 
phase-field variables. To accelerate convergence in solving the resulting fully discrete 
system, we use the linear multigrid method. At each time step, the calculations are 
completely decoupled. The numerical experiments not only indicate the desired accuracy 
but also show superior capability in complex geometries. Furthermore, the numerical and 
analytical results for the compound droplets on a flat solid are in good agreement with 
each other.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The diffuse-interface (phase-field) method is practical for simulating physical problems such as anti-phase coarsening 
[1,2], two-phase fluid flows [3–7], vesicle membrane [8–10], and crystallization [11,12]. In many real-world applications, 
mass-conserved multi-phase physical processes are more common. To investigate multiple interfacial dynamics, various 
effective models and algorithms based on the Cahn–Hilliard (CH) theory have been proposed (see [13–18] and references 
therein).
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From [19,20], a typical N-component (N ≥ 3) CH-type diffuse-interface model is expressed as follows:

∂φl

∂t
= M�μl, (1)

μl = F ′(φl) − ε2�φl + β(φ), l = 0,1, ..., N − 1, (2)

where φl (∈ [0, 1]) is concentration of l-th component, μl is chemical potential, M > 0 is constant mobility, ε > 0 is a 
parameter, and F (φl) = 0.25φ2

l (1 − φl)
2. Here, F ′(φl) denotes the derivative of F (φl) with respect to φl . To satisfy the con-

servative constraint of a multi-component system (i.e., φ0 +φ2 +· · ·+φN−1 = 1), the simplest choice of Lagrange multiplier is 
β(φ) = − 

∑N−1
l=0 F ′(φl)/N [20]. Because one component in the N-component CH system does not penetrate the bulk phases 

of the other components, some researchers [21–23] developed a modified ternary CH model to simulate two-phase fluid or 
material dynamics in irregular domains. To the best of our knowledge, no similar phase-field model exists for treating com-
pound droplets in contact with solids. The main difficulty is the different wetting conditions of compound liquids. Moreover, 
the contact angles between the droplets and solid substrate are linked to each other through the three-phase interfacial an-
gles between the liquids. To address the contact line problems of ternary fluids in contact with a solid substrate, Zhang et 
al. [24] defined the contact angle boundary condition in a weighted manner. Subsequently, Huang [25] proposed a similar 
phase-field lattice Boltzmann method to simulate compound droplets in contact with irregular solids. Recently, Huang et al. 
[26] investigated the contact angle condition for a second-order phase-field multi-phase flow model. It is worth noting that 
these methods require artificial treatment on ghost grids near the boundary. To efficiently simulate compound droplets in 
contact with arbitrary solids, we develop a novel diffuse-interface model based on a modified four-component CH system. 
One component is initially fixed as a solid phase, and we solve the remaining three components to capture the dynamics 
of the compound droplets and ambient liquid. By utilizing Young’s equality and equilibrium profiles of the phase-field func-
tions, a correction term (penalty term) is added to the original equations to reflect the contact angle condition. Weighted 
contact angles are designed for each liquid component by considering the horizontal force balance between the contact 
and interfacial angles. The proposed model is efficient to implement because the calculation is performed on Eulerian grids 
without explicit treatment on the liquid-solid boundary, that is, we do not need to set the contact angle condition on the 
domain boundary, and the wetting dynamics is implicitly achieved by solving the governing equations. Furthermore, the 
proposed model is not limited to the geometrical shape of a solid.

The remainder of this paper is structured as follows. In Section 2, a modified diffuse-interface model with weighted 
contact angle constraint is derived. The solution algorithms are described in Section 3. Various simulations are conducted in 
Section 4 to confirm the performance of the proposed model. Section 6 concludes the paper.

2. Modified multi-phase model

Let the solid be represented by a fixed component (i.e., φ0) embedded in the full domain �. We assume

φ0 =
{

1, in Solid,

0, otherwise.
(3)

It is evident that 0 ≤ 1 − φ0 ≤ 1 on �. Droplets 1 and 2 are represented by φ1 and φ2, respectively, and the ambient liquid 
is represented by φ3. For compound droplets in contact with the solid, the surface tension coefficients between droplet 1
and solid, droplet 2 and solid, ambient liquid and solid are σ01, σ02, and σ03, respectively. The surface tension coefficients 
of the liquid interfaces are σ13, σ23, and σ12. Because of the different wetting conditions of the liquids, we define the 
contact angles as θ13, θ23, θ12, and θ21. Clearly, we have θ21 = 180◦ − θ12. It is worth noting that the local flatness of the 
solid surface is assumed in this study. In future work, we will further consider an approach for handling rough surfaces 
with sharp corners. At the ternary contact point, the interfacial angles are ψ1, ψ2, ψ3, and ψ1 + ψ2 + ψ3 = 360◦ . From the 
balance of interfacial angles at the equilibrium state, we have

sinψ1

σ23
= sinψ2

σ13
= sinψ3

σ12
. (4)

Fig. 1 shows a schematic illustration of compound droplets in contact with a solid substrate.
On the liquid-solid boundary, the relationship between the contact and surface tension coefficients is expressed by 

Young’s equality

σpq cos θpq = σ0q − σ0p . (5)

Here, the subscripts p and q can be 1, 2, 3, and p �= q. By considering the horizontal force balance [24], the following 
relation can be derived from Eqs. (4) and (5)

sinψ2 cos θ13 − sinψ3 cos θ12 − sinψ1 cos θ23 = 0. (6)

This equality indicates that the contact and interfacial angles are linked to each other. With any two contact angles and pre-
supposed interfacial forces, the wetting condition of compound droplets can be uniquely determined. Under the equilibrium 
2
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Fig. 1. Schematic illustration of compound droplets in contact with solid.

profile of a phase-field function [20], we know that |∇φl| = φl(1 − φl)/(
√

2ε) holds approximately. Let θ̃ be an equivalent 
contact angle, Young’s equality leads to

∇φl · n = |∇φl| cos θ̃ = −φl(φl − 1) cos θ̃/(
√

2ε), (7)

where n = ∇φ0/|∇φ0| denotes the unit normal vector to the solid. By recasting Eq. (7), we derive the following equality

ε2∇φ0 · ∇φl + εφl(φl − 1)|∇φ0| cos θ̃/
√

2 = 0. (8)

By taking the droplet 1 as an example, it can be observed that the equivalent contact angle θ̃ can be either θ13 or θ12. This 
is a typical difference from the contact angle in a two-phase system (single droplet) contacting a solid because we need to 
consider a possible angle at each spatial point. Similar problems should also be considered for droplet 2 and ambient liquid. 
Inspired by [24], we present weighted contact angles as follows

θ1 = φ3

φ2 + φ3
θ13 + φ2

φ2 + φ3
θ12, (9)

θ2 = φ3

φ1 + φ3
θ23 + φ1

φ1 + φ3
θ21. (10)

For droplets 1 and 2, we replace the equivalent contact angle θ̃ in Eq. (8) by θ1 and θ2, respectively. Because the weighted 
contact angles are determined by local phase-field functions, an accurate contact angle at each spatial point can be easily 
achieved. To avoid the bias phenomenon at the liquid-solid-liquid contact point [27], we successively update φ1, φ2, and φ3

in this study. To accurately evaluate the contact angle of the ambient liquid, we propose the following weighted angle

θ3 = 180◦ −
(

φ1

φ1 + φ2
θ1 + φ2

φ1 + φ2
θ2

)
. (11)

For the ambient liquid, we replace the equivalent contact angle θ̃ in Eq. (8) by θ3. By adding Eq. (8) into Eq. (2) and 
neglecting the small effect from ε2φ0�φl in liquid regions, the modified diffuse-interface model can be expressed as

∂φl

∂t
= M∇ · ((1 − φ0)∇μl), (12)

μl = F ′(φl) + β̂(φ) + εφl(φl − 1)|∇φ0| cos θl/
√

2 − ε2∇ · ((1 − φ0)∇φl), l = 1,2,3, (13)

where φ0 is fixed during the initial stage. Inspired by the diffuse-domain (DD) method [28], we multiply F ′(φl) with 1 − φ0

and rewrite Eqs. (12) and (13) to be

∂φl

∂t
= M∇ · ((1 − φ0)∇μl), (14)

μl = (1 − φ0)F ′(φl) + β̃(φ) + εφl(φl − 1)|∇φ0| cos θl/
√

2 − ε2∇ · ((1 − φ0)∇φl), l = 1,2,3. (15)

To satisfy the conservative constraint (i.e., 
∑3

l=0 φl = 1), the modified version of the Lagrange multiplier is

β̃(φ) = −1

3

[
3∑

l=1

(
(1 − φ0)F ′(φl) + εφl(φl − 1)|∇φ0| cos θl/

√
2
)]

.

In Appendices A and B, we provide some details of the derivation of Eq. (13) and a specific form of β̃(φ). Each component 
is calculated in the full domain without explicit treatment of the boundary condition. The wetting phenomenon is achieved 
implicitly by updating the governing equations. On the boundary of the full domain, we can consider simple natural bound-
ary conditions such as the homogeneous Neumann condition or periodic condition.
3
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Remark 2.1. Based on the geometrical relation and equilibrium assumption of the interface, we derive the governing equa-
tions for modeling wetting problems on a locally flat surface. We note that the present phase-field model is not derived 
from a free energy functional based on gradient flow theory. Moreover, the weighted contact angle θl (l = 1, 2, 3) is related 
to phase function φl . It is difficult to construct an energy functional using Eqs. (12) and (13). Therefore, we conclude that 
the proposed model does not correspond to an energy law.

3. Solution algorithm

Let �t = T /NT be the time step, where T is the total time and NT is the number of time iterations. Based on the second-
order backward difference formula (BDF2) over time, the temporal discrete equations in Eqs. (14) and (15) are expressed 
as

3φn+1
l − 4φn

l + φn−1
l

2�t
= M∇ · ((1 − φ0)∇μn+1

l ), (16)

μn+1
l = (1 − φ0)F ′(φ∗

l ) + β̃(φ∗) + εφ∗
l (φ∗

l − 1)|∇φ0| cos θ∗
l /

√
2

− ε2∇ · ((1 − φ0)∇φn+1
l ) + S(φn+1

l − φ∗
l ), (17)

where l = 1, 2, 3 and (·)∗ = 2(·)n − (·)n−1 is the extrapolation. The stabilization term (last term) in Eq. (17) is used to 
improve the stability and S > 0 is a constant. The equations are discretized in space using the finite difference method 
(FDM). The phase-field functions φl, l = 0, 1, 2, 3 are stored at the cell centers. Before the start of the fully discrete scheme, 
we define some useful notations in a two-dimensional (2D) space. The extension to three-dimensional (3D) space follows 
a similar approach. The computational domain is � = (Lx, Rx) × (B y, T y). The uniform mesh size (space step) is h = (Rx −
Lx)/Nx = (T y − B y)/N y , where Nx and N y are even positive integers. The set of cell centers in the full domain is defined 
as �d = {(xi, y j)|xi = Lx + (i − 0.5)h, y j = B y + ( j − 0.5)h}, where 1 ≤ i ≤ Nx and 1 ≤ j ≤ N y . Let φn

l,i j = φl(xi, y j, n�t), 
μn

l,i j = μl(xi, y j, n�t), and φ0,i j = φ0(xi, y j). The fully discrete scheme is written as

3φn+1
l,i j − 4φn

l,i j + φn−1
l,i j

2�t
= M∇d · ((1 − φ0,i j)∇dμ

n+1
l,i j ), (18)

μn+1
l,i j = (1 − φ0,i j)F ′(φ∗

l,i j) + β̃(φ∗
i j) + εφ∗

l,i j(φ
∗
l,i j − 1)|∇hφ0,i j| cos θ∗

l,i j/
√

2

− ε2∇d · ((1 − φ0,i j)∇dφ
n+1
l,i j ) + S(φn+1

l,i j − φ∗
l,i j), l = 1,2,3, (19)

where

∇hφ0,i j =
(

φ0,i+1, j − φ0,i−1, j

2h
,
φ0,i, j+1 − φ0,i, j−1

2h

)
.

For simplicity, we let Mi j = 1 − φ0,i j . The discrete divergence term is defined as follows:

∇d · (Mi j∇dμl,i j) =
Mi+ 1

2 , j(μl,i+1, j − μl,i j) −Mi− 1
2 , j(μl,i j − μl,i−1, j)

h2

+
Mi, j+ 1

2
(μl,i, j+1 − μl,i j) −Mi, j− 1

2
(μl,i j − μl,i, j−1)

h2
,

where Mi+ 1
2 , j = 0.5(Mi+1, j + Mi j) and the other quantities are similarly defined. This definition is also used for ∇d ·

(Mi j∇dφl,i j). On the boundary of �d , we consider periodic or the following discrete homogeneous Neumann boundary 
conditions

φl,0, j = φl,1, j, φl,Nx+1, j = φl,Nx, j, φl,i,0 = φl,i,1, φl,i,N y+1 = φl,i,N y ,

μl,0, j = μl,1, j, μl,Nx+1, j = μl,Nx, j, μl,i,0 = μl,i,1, μl,i,N y+1 = μl,i,N y , l = 1,2,3.

To accelerate convergence, we use the linear multigrid method [29] to solve the resulting discrete system. The algorithms 
are briefly introduced as follows. Equations (18) and (19) are recast to be

Ld(φ
n+1
l ,μn+1

l ) = (sn
a, sn

b), (20)

where the linear operator Ld is

Ld(φ
n+1
l ,μn+1

l ) =
(

3φn+1
l,i j

2�t
− M∇d · ((1 − φ0,i j)∇dμ

n+1
l,i j ), μn+1

l,i j + ε2∇d · ((1 − φ0,i j)∇dφ
n+1
l,i j ) − Sφn+1

l,i j

)
,

4
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and the source terms are as follows:

sn
a = 4φn

l,i j − φn−1
l,i j

2�t
,

sn
b = (1 − φ0,i j)F ′(φ∗

l,i j) + β̃(φ∗
i j) + εφ∗

l,i j(φ
∗
l,i j − 1)|∇hφ0,i j| cos θ∗

l,i j/
√

2 − ε2∇d · ((1 − φ0,i j)∇dφ
n+1
l,i j ) − Sφ∗

l,i j.

The multigrid algorithm with a V-cycle [29–31] can be summarized as follows:(
φ

n+1,m+1
l,k ,μn+1,m+1

l,k

)
= V-cycle

(
k, φ

n+1,m
l,k ,μn+1,m

l,k , Ld, sn
a, sn

b, νa, νb

)
, (21)

where subscript k indicates the approximation on a mesh grid �k containing 2k × 2k grids. Here, k is the multigrid level. 
The superscripts m + 1 and m indicate the results obtained after and before one V-cycle, respectively. In one V-cycle, we 
successively perform the pre-smoothing, coarse grid correction, and post-smoothing steps as follows:
Pre-smoothing.(

φ̄
n+1,m
l,k , μ̄n+1,m

l,k

)
= SMOOTHνa

(
φ

n+1,m
l,k ,μn+1,m

l,k , Ld, sn
a, sn

b

)
, (22)

where (φ̄n+1,m
l,k , μ̄n+1,m

l,k ) are the updated results after νa iterations.
Coarse grid correction.

1. Calculate the defects: (d̄m
a,k, ̄d

m
b,k) = (sn

a, sn
b) − Ld

(
φ̄

n+1,m
l,k , μ̄n+1,m

l,k

)
.

2. Restrict the defects: d̄m
a,k−1 = Ik−1

k d̄m
a,k, d̄m

b,k−1 = Ik−1
k d̄m

b,k .
3. If k > 1, we solve the discrete system on a coarser grid �k−1 using the initial conditions (0, 0) and source terms 
(d̄m

a,k−1, ̄d
m
b,k−1). Otherwise, we calculate the solutions using a smoothing step.

4. Interpolate the correction: ûn+1
a,k = Ik

k−1ûn+1,m
a,k−1 , ûn+1

b,k = Ik
k−1ûn+1,m

b,k−1 .
5. Calculate the approximations on �k:(

φ̃
n+1,m
l,k , μ̃n+1,m

l,k

)
=

(
φ̄

n+1,m
l,k , μ̄n+1,m

l,k

)
+

(
ûn+1,m

a,k , ûn+1,m
b,k

)
. (23)

Post-smoothing.(
φ

n+1,m+1
l,k ,μn+1,m+1

l,k

)
= SMOOTHνb

(
φ̃

n+1,m
l,k , μ̃n+1,m

l,k , Ld, sn
a, sn

b

)
. (24)

Please refer to [29–31] for more details regarding the multigrid algorithm.

Remark 3.1. In the present study, we design a temporally second-order accurate scheme based on the BDF2. Note that BDF2-
type method requires information from the previous time levels. To initiate the algorithm, the first-order backward Euler 
method is used to perform calculations in the first-time step. Our proposed model can also be discretized in time by using 
other approaches such as the Crank–Nicolson and Runge–Kutta-type methods.

4. Numerical validations

This section presents several computational experiments to validate the accuracy and capability of the proposed method. 
The parameters are set to M = 1 and S = 2 in the tests. Without specific requirement, the full computational domain is 
� = (0, 4) × (0, 2) and mesh size is h = 1/128.

4.1. Convergence tests

The initial settings are shown in Fig. 2(a). To test the accuracy in terms of time, the reference solutions are calculated 
using a smaller time step δt = 0.001h2. The increasingly coarser time steps (�t = 8δt , 16δt , 32δt , and 64δt) are used to 
compute the convergence rate. The computational results shown in Table 1 indicate that the second-order accuracy in 
time is achieved. To test the accuracy in terms of space, the reference solutions are obtained using a finer mesh size (i.e., 
h = 1/256). The time step is fixed as �t = 6.10e-8 and ε = 0.06. The increasingly coarser mesh sizes (h = 1/128, 1/64, 
and 1/32) are used. For the definitions of discrete L2-errors and the convergence rate, see [32]. From the numerical results 
plotted in Table 2, we observe that the algorithm has a second-order accuracy in terms of space.

4.2. Compound droplets on a flat substrate

In [24], Zhang et al. presented analytical expressions for the spreading lengths of compound droplets on a substrate. 
To simulate different wetting phenomena, they proposed a weighted contact angle condition on the bottom boundary of a 
regular domain. It is worth emphasizing that our proposed model does not need to directly handle the boundary conditions, 
5
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Table 1
L2-errors and convergence rates for φ1 and φ2 with respect to different time steps.

�t 64δt 32δt 16δt 8δt

Error for φ1: 1.60e-3 4.53e-4 1.06e-4 2.86e-5
Rate for φ1: 1.82 2.09 1.89
Error for φ2: 1.60e-3 4.53e-4 1.04e-4 2.57e-5
Rate for φ2: 1.82 2.13 2.01

Table 2
L2-errors and convergence rates for φ1 and φ2 with respect to different mesh sizes.

Mesh size: 1/32 1/64 1/128

Error for φ1: 2.39e-2 5.80e-3 1.20e-3
Rate for φ1: 2.04 2.27
Error for φ2: 2.28e-2 5.60e-3 1.20e-3
Rate for φ2: 2.03 2.22

Fig. 2. Compound droplets on a flat substrate. The initial state and evolution process are displayed in (a) and (b). Here, the arrows indicate the directions 
of evolution. The steady state is shown in (c).

Table 3
Exact and numerical results of contact angles: θ13, θ23, θ12, and θ21.

Contact angle: θ13 θ23 θ12 θ21

Exact value: 90◦ 60◦ 120◦ 60◦
Numerical value: 90.6◦ 60.4◦ 120.3◦ 59.7◦

Table 4
Analytical and numerical results of spreading lengths and their relative er-
rors. Here, �t = 0.1 is used.

Length: L1 L2

Analytical value: 1.072 1.707
Numerical value: 1.0643 1.6929
Relative error: 0.72% 0.83%

and different wetting conditions can be implicitly achieved by solving the governing equations. In the present simulation, the 
region (y < 0.15) is occupied by a solid phase (i.e., φ0), the compound droplets are located at (2, 0.15) and have the same 
area 0.25π R2, where R = 1 is the radius. The initial conditions are shown in Fig. 2(a). We set �t = 0.1, h = 4/512 = 0.0078, 
ε = 9.4e-3, θ13 = 90◦ , θ23 = 60◦ , θ12 = 120◦ , and θ21 = 180◦ − θ12, which corresponds to ψ1 = ψ2 = ψ3 = 120◦ . The time 
evolutions of droplets 1 (solid line) and 2 (dashed line) are shown in Fig. 2(b). The steady state is displayed in Fig. 2(c). 
Table 3 lists the exact and numerical values of the contact angles θ13, θ23, θ12, and θ21. The spreading lengths and relative 
errors are listed in Table 4. Please refer to [24] for the calculation of analytical spreading lengths. It can be seen that the 
computational and analytical results are quantitatively similar. The relative errors are less than 1%.

To show the convergence with respect to ε , we consider the same simulation with unchanged parameters except the 
increasingly smaller values of ε: 6.60e-3, 1.32e-2, and 2.64e-2. The analytical spreading state in [24] is considered as a 
6
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Fig. 3. Convergence of interface profile with respect to different values of ε .

Fig. 4. Spreading states at t = 500 with respect to different values of ε .

reference. In Fig. 3, the interface profiles with respect to different ε values are plotted. Here, the inset shows the local 
close-up view. As the refinement of ε , we observe the convergence of interface profile.

The diffuse-interface method analytically approximates the sharp interface model as a decrease in ε . However, too small 
value of ε will lead to the pinning phenomenon of interfacial dynamics. To verify this, we perform the simulation with a 
smaller value of ε . Fig. 4 plots the final stages (t = 500) with respect to ε = 6.60e-3 and 3.80e-3. The result indicates that 
a smaller ε is not adoptable in present mesh size because the evolutions of the compound droplets are delayed. For this 
present benchmark problem, ε = 6.60e-3 is an appropriate choice.

Remark 4.1. With sufficiently small mesh size, the diffuse-interface model can converge as the value of ε is appropriately 
refined. However, too small value of ε requires fine enough spatial grid size to numerically resolve the interfacial transition 
layer. Otherwise, the numerical pinning effect may occur, leading to undesired results. In practice, the number of grid points 
across the interfacial transition layer should be larger than 4 to ensure that the Laplacian operator can be accurately calcu-
lated using a finite difference stencil. To approximate the sharp interface result, on can use the adaptive mesh refinement 
technique [33] to efficiently increase the grid points in interfacial transition layer.

4.3. Effect of stabilization parameter

In Eq. (19), we introduce a stabilization term to improve the stability. It is worth noting that the stabilization technique 
has been extensively adopted for designing linear and stable time-marching schemes for phase-field problems. In a pio-
neering study, Shen and Yang [34] developed a linear and unconditionally stable scheme for the Allen–Cahn (AC) equation. 
To obtain the desired stability, they introduced a stabilization term and clarified the value of the stabilization parameter 
via energy-stable condition. Yang and Kim [35] numerically investigated the effect of the stabilization parameter on the 
energy of square crystal pattern on a sphere. In recent years, stabilization idea has been successfully used in various auxil-
iary variable-type methods, such as the invariant energy quadratization (IEQ) method [36] and the scalar auxiliary variable 
(SAV) method [37]. To test the effect of S , we simulate compound droplets in contact with a flat substrate with �t = 0.1, 
h = 4/512 = 0.0078, ε = 0.0094, and M = 1. Fig. 5 shows the computational results at t = 0.2 with S = 0 and S = 2. With 
S = 0, the stabilization term is absent and we observe that the computation blows up. By contrast, S = 2 leads to stable re-
sults. As shown in Fig. 2, the computation with S = 2 remains stable even if the relatively steady state reaches. As reported 
by [38,39], an excessively large value of S introduces additional errors. Therefore, we empirically choose S = 2 in all the 
simulations.

It is worth noting that S = 2 has been extensively used in previous works [34,36,37] to satisfy the energy estimation 
of phase-field models. For a linear semi-implicit scheme, the stabilization term improves the stability but may delay the 
evolutional dynamics. It is better to perform an accurate simulation with a relatively smaller value of S and a finer time 
step. In present study, we find that S = 2 does not delay the evolutional dynamics. To confirm this, the aforementioned test 
is performed with the same parameters except a smaller stabilization parameter S = 0.6 and a finer time step �t = 0.01. In 
Fig. 6, highly consistent phase profiles at specific moments can be observed. Here, the reference is set to a numerical result 
with S = 2 and a larger time step. This comparison test indicates that S = 2 has almost no effect on the dynamics because 
7
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Fig. 5. Snapshots of compound droplets in contact with a flat substrate with respect to S = 0 and S = 2.

Fig. 6. Spreading states of compound droplets with respect to different values of S and time steps. The computational moments are shown under each 
figure.

the analytical and numerical results under different time steps and different stabilization parameters are in good agreement. 
It is still worth noting that the difference at t = 20 appears noticeably larger than the differences at t = 100 and t = 200, 
although all of them are relatively small.

4.4. Compound droplets on a rough substrate

Contact angle hysteresis is a common physical phenomenon. The real contact angle is generally not equal to the presup-
posed value, because Young’s equality does not hold on the rough surface. To simulate this, we consider a rough substrate 
with periodic wave structures, as shown in Fig. 7(a). The parameters are the same as those described in the previous sub-
section. Fig. 7 displays snapshots at the final stage (t = 500) in which the inset shows the local close-up view. We observe 
that the computed contact angle between droplet 2 and solid slightly deviates from its desired value. In the present simu-
lation, we note that the contact angle is still measured on a local macroscopic flat surface. For a real physical problem, the 
microscopic contact angle should be considered. Young’s equality is modified as follows:

σpq cos θpq + τ

rB
= σ0q − σ0p, (25)

where τ is the linear tension from thermodynamics and rB is the effective radius of a droplet in contact with the solid. 
The present study only aims to develop a phase-field approach for modeling the wetting problem on an ideal surface with 
flatness, and an extended model for microscopic contact angle on real rough surfaces will be further studied in our future 
work.

4.5. Compound droplets on a tilted substrate

Here, we investigate the evolution of the compound droplets on a tilted substrate. The computational domain is � =
(0, 4) × (0, 2). The solid phase occupies the region locating under the tilted line through point (2, 0.15). A compound droplet 
with the same initial area as in subsection 4.2 is set on the tilted substrate. To perform the comparison, we calculate the 
compound droplets in a regular domain using a method similar to that in [24] and then rotate the results at a specific angle. 
8
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Fig. 7. Compound droplets on a rough substrate. The initial and final states are shown in (a) and (b), respectively.

Fig. 8. Compound droplets on a tilted substrate. The results computed by the proposed and previous methods are represented by the solid line and open 
circle, respectively. Under each figure, the computational moment is shown.

Fig. 8 shows the comparisons at different moments. We can observe that the computational results are in good agreement 
with each other.

4.6. Compound droplets on the circular solid

To demonstrate the capability of our proposed mathematical model on a curved surface, we initially define compound 
droplets with radius R = 0.7 near a circular solid, which is similar to the setting in [25]. The entire computational domain 
is � = (0, 4) × (0, 4), h = 1/64, and �t = 0.1. In the first case, a circular solid with radius Rs = 0.6 is located at (2, 1.4). 
The contact angles are θ13 = 90◦ , θ23 = 45◦ , θ12 = 135◦ , and θ21 = 180◦ − θ12, corresponding to ψ1 = ψ2 = ψ3 = 120◦ . The 
final stage is shown in Fig. 9(a). In the second case, the radius of solid is Rs = 0.8. The contact angles are θ13 = 120◦ , 
θ23 = 69.295◦ , θ12 = 135◦ , and θ21 = 180◦ − θ12, which correspond to ψ1 = 135◦, ψ2 = 120◦, ψ3 = 105◦ . Fig. 9 shows the 
results at t = 500. The present computational results are qualitatively similar to the previous results in [25].

In Fig. 10(a) and (b), we plot 
∣∣∣∑3

l=0 φl − 1
∣∣∣ at final stage (t = 500) with respect to cases 1 and 2, respectively. It can be 

observed that the local relative errors are close to zero. For the CH-type phase field model, it is well known that the order 
parameter cannot be precisely bounded by 0 and 1. Furthermore, Lee and Kim [20] reported that the spurious phases may 
appear for most Lagrange multipliers. These two reasons likely results in the value of 

∣∣∣∑3
l=0 φl − 1

∣∣∣ not being strictly zero. 
In our upcoming works, we plan to investigate a more accurate multi-phase model with interfacial correction and a new 
component-dependent Lagrange multiplier to further improve the accuracy of the simulation.

Next, we perform similar simulations in 3D space. A spherical solid with radius 0.8 and center position (2, 2, 1.1) is 
embedded into the entire computational domain � = (0, 4) × (0, 4) × (0, 4). The initial compound droplets with a radius of 
0.9 are located at (2, 2, 2.35). In the first case, we set θ13 = 90◦ , θ23 = 45◦ , θ12 = 135◦ . In the second case, we set θ13 = 120◦ , 
θ23 = 69.295◦ , θ12 = 135◦ . The left and right columns in Fig. 11 show the computational results with respect to cases 1 and 
9
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Fig. 9. Compound droplets on the circular solid. The results corresponding to the first and second cases are shown in (a) and (b), respectively. The summa-
tions of average concentrations are plotted in (c).

Fig. 10. Local relative error
∣∣∣∑3

l=0 φl − 1
∣∣∣ at final stage with respect to case 1 (a) and case 2 (b).

Table 5
Iterative numbers for each component in 2D and 3D spaces.

2D: φ1 φ2 φ3 3D: φ1 φ2 φ3

Without MG: 35 34 36 Without MG: 43 46 49
With MG: 4 4 4 With MG: 4 4 4

2, respectively. From top to bottom, the snapshots correspond to different moments. Different wetting phenomena can be 
observed on the spherical solid substrates.

In this study, we adopt a linear multigrid algorithm (MG) equipped with a Gauss–Seidel-type relaxation method to 
accelerate convergence. To verify the efficiency, we perform simulations with and without an MG and count the iterative 
number in one time step. The 2D and 3D initial settings and parameters in case 2 are used. In particular, we use the same 
mesh size h = 1/32 in 2D and 3D spaces. The time step is set to �t = 0.01. Table 5 lists the iterative numbers consumed in 
one time step for 2D and 3D simulations. The results indicate that the MG obviously accelerates the computation.

4.7. Fluid flow-coupled compound droplets in contact with solid

By utilizing the smoothed profile-type method [40] to solve the Navier–Stokes (NS) equations, a hydrodynamically cou-
pled model can be proposed as

∂φl

∂t
+ ∇ · (uφl) = 1

Pe
∇ · ((1 − φ0)∇μl), (26)

μl = (1 − φ0)F ′(φl) + β̃(φ) + εφl(φl − 1)|∇φ0| cos θl/
√

2 − ε2∇ · ((1 − φ0)∇φl), l = 1,2,3, (27)

ρ∗
(

∂u

∂t
+ u · ∇u

)
= −∇p + 1

Re
�u + SF + (ρ(φ) − ρ∗)g + φ0

κ
(us − u), (28)

∇ · u = 0, (29)

where ρ(φ) and η(φ) are determined by φl , Pe is the Peclet number, Re is the Reynolds number, SF is the surface tension 
[24], κ > 0 is the permeability, us is the velocity of the solid, ρ∗ is the background density, and g = (0, −g) is the gravi-
10
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Fig. 11. Compound droplets on a spherical solid substrate in 3D space. The left and right columns correspond to cases 1 and 2. From the top to bottom, the 
results are at t = 3.2, 11.2, and 27.2.

tational acceleration. We can observe that the entire system can be directly solved on Eulerian grids. In actual application, 
Bergmann et al. [41] suggested that κ should take a sufficiently small value. For the purpose of numerical stability, we 
consider a prediction-correction strategy to split Eq. (28) into two sub-problems. In the first step, we calculate the velocity 
field in the absence of the last term in Eq. (28) and then we correct the velocity field in solid phase by solving an ordinary 
differential equation (ODE) including the last term in Eq. (28). To obtain approximate results, we can correct the velocity 
field using a cut-off approach similar to the augmented projection method proposed by Kim [42]. To discretize the NS 
equations in time, we adopt the BDF2 type scheme, see [43,44] and references therein for the implementations.

In the first case, we consider falling compound droplets that are initially in contact with a solid fibre on � = (0, 2) ×
(0, 2). Along x-direction, all variables are periodic. On the top and bottom boundaries, homogeneous Neumann and no-
slip boundary conditions are used for the phase-field function and velocities, respectively. The initial settings are shown 
in the left subfigure of the first row of Fig. 12. We let �t = 0.01, ε = 0.0056, Re = 30, Pe = 1, θ13 = 120◦ , θ23 = 69.295◦ , 
θ12 = 135◦ , ρ1 = ρ2 = 1.6, ρ3 = 1, and g = 1. As shown in Fig. 12, the compound droplets descend under the effect of 
buoyancy force. Owing to the different wetting conditions, droplet 1 gradually separates from the solid fibre, whereas part 
of droplet 2 still attaches to the fibre after the appearance of pinch-off.

In the second case, we simulate the shear flow-driven deformation of the compound droplets on a solid substrate. The 
full domain is set to � = (0, 4) × (0, 2). The solid phase is located at y = 0.15. The initial settings for the compound droplets 
are shown in the top row of Fig. 13. In the computation, the top wall moves at a constant horizontal velocity U = 1. The 
initial velocity field is u(x, y, 0) = (u0, 0), where u0 = U y/2. The periodic boundary condition is used on the left and right 
boundaries. Here, we use Re = 20, Pe = 1, �t = 0.005, ε = 0.0066, θ13 = 120◦ , θ23 = 60◦ , and θ12 = 135◦ . The densities of 
all liquid components are equal and the buoyancy force is neglected. As shown in Fig. 13, the droplet 1 moves to the upper 
position of the droplet 2 after the early deformation, and then moves to the downstream side of the droplet 2.
11
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Fig. 12. Falling compound droplets. Under each figure, the computational moment is shown. The blue arrows represent the direction of velocity. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

5. Discussions

Based on the equilibrium Young’s equality, the proposed diffuse-interface model describes the contact angle dynamics 
of compound droplets in contact with a solid substrate. The motion of compound droplets near solid wall is governed by 
the fluid flow and diffusion-driven dynamics at the interface. A similar idea can be found in [22,24,45]. For a dynamic 
process that is not close to equilibrium, some researchers have developed a more accurate model with a moving contact 
line. Qian et al. [46] investigated molecular scale contact line dynamics with fluid flows. Based on the phase-field model, 
Gao and Wang [47] presented an efficient scheme and simulated flow-coupled droplets in contact with a solid. To perform 
a comparison, we consider a simulation similar to that in [48]. The initial droplet with a radius R = 2 is located at the 
center position of the bottom boundary. The initial velocity is zero, and the solid phase is located at y = 0.1, h = 1/32, and 
�t = 0.25h. By setting one fluid phase to zero, the proposed model becomes a phase-field method for two-phase flows in 
irregular domains [49]. Here, the contact angle θ = 150◦ is constant. Fig. 14(a) displays a snapshot of the spreading droplet 
in [48]. The left and right columns in Fig. 14(b) show the present simulations of the two-phase profile and velocity field, 
respectively. Although the results are qualitatively similar, a small difference near the fluid-solid interface can be observed. 
It is noteworthy that the moving contact line model [46–48] is more accurate for problems in a non-equilibrium state. In a 
future study, we will extend the present model to better fit the dynamic process that is not close to equilibrium.

6. Concluding remarks

Here, we developed a novel diffuse-interface model to describe compound droplets in contact with a solid. The solid was 
represented by the fixed phase of a four-component CH system. Based on Young’s equality, the equilibrium profile of the 
diffuse interface, and the horizontal force balance relation, a correction term reflecting the contact line dynamics for each 
liquid phase was derived. In the implementation, the proposed model was directly discretized on Eulerian grids using the 
FDM, and no artificial treatments were introduced on the liquid-solid boundary. To maintain efficiency and obtain second-
order accuracy in time, we designed a linear, decoupled, and stabilized scheme based on BDF2. Various computational 
experiments were performed to validate the accuracy and capability of the proposed method. In future work, we will 
develop an efficient and practical method for handling multiple heat fluid-coupled droplets with large density and viscosity 
ratios [50–53] and surfactant-laden fluids [54–56] in complex geometries.
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Fig. 13. Shear flow-driven deformation of compound droplets on a flat solid substrate. The computational moments are shown under each figure.

Fig. 14. Comparison study of a spreading droplet on a flat substrate. Here, (a) is the previous simulation which is adapted from [48] with the permission of 
Elsevier Science; (b) shows the present simulation.
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Appendix A

By adding Eq. (8) into the right-hand side of Eq. (2), we have

μl = F ′(φl)−ε2�φl︸ ︷︷ ︸
I

+β(φ)+ε2∇φ0 · ∇φl︸ ︷︷ ︸
II

+εφl(φl − 1)|∇φ0| cos θ̃/
√

2. (30)

Using the chain rule, the combination of terms I and II equals to −ε2∇ · ((1 − φ0)∇φl) − ε2φ0�φl . Subsequently, we obtain 
the equivalent form as follows:

μl = F ′(φl) + β̂(φ) + εφl(φl − 1)|∇φ0| cos θ̃/
√

2 − ε2∇ · ((1 − φ0)∇φl) − ε2φ0�φl. (31)

For fluid phases, φ0 = 0. This indicates that aforementioned equation and Eq. (13) are equivalent in the regions occupied 
by fluids. On the fluid-solid interface, the last term of the above equation approximates to zero as φ0 → 0. Furthermore, 
the last term contributes less to the wetting dynamics because it does not include the contact angle θ . For convenience, we 
neglect the effect of the last term on the fluid-solid interface and derive Eq. (13).

Appendix B

Using the constraint φ0 + φ1 + φ2 + φ3 = 1, we have ∂ψ
∂t = 0 and ψ = ∑3

l=0 φl . Because φ0 is fixed in the computation, 
we get

0 = ∂(φ1 + φ2 + φ3)

∂t
= M∇ ·

(
(1 − φ0)∇

3∑
l=1

μl

)
. (32)

Here, we can simply set 
∑3

l=1 μl = 0 to suppress the time evolution of 
∑3

l=1 φl . In the aforementioned equation, 1 − φ0 is 
used to suppress the evolutions of fluids in solid. From 

∑3
l=1 μl = 0, we have

3∑
l=1

(1 − φ0)F ′(φl) + 3β̃(φ) +
3∑

l=1

[
εφl(φl − 1)|∇φ0| cos θ̃/

√
2
]
− ε2∇ ·

[
(1 − φ0)∇

(
3∑

l=1

φl

)]
= 0. (33)

In fluid region, we have 
∑3

l=1 φl = 1, the last term on the left-hand side of Eq. (33) can be neglected. Thus, we obtain the 
expression of β̃(φ) as

β̃(φ) = −1

3

[
3∑

l=1

(
(1 − φ0)F ′(φl) + εφl(φl − 1)|∇φ0| cos θl/

√
2
)]

.
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