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The Cahn–Hilliard (CH) equation is a classical mathematical equation which models the spinodal decomposition 
in binary fluid mixtures. In the real world, the phase change in a two-phase system usually occurs in irregular 
domains. To efficiently and accurately simulate this dynamics, we herein develop linear temporally first- and 
second-order accurate methods for the CH equation in arbitrary domains. The implicit-explicit (IMEX) Runge–

Kutta method is adopted to construct discrete schemes in time. By introducing a simple boundary control 
function, we transform the original equations into equivalent forms in irregular domains and discretize the 
space by using the standard second-order finite difference stencil. In each temporal step, the proposed numerical 
schemes are highly efficient and easy to implement because we only need to solve several linear elliptic type 
equations. The mass conservation and unconditional energy stability of the proposed schemes are analytically 
proved. The multigrid algorithm is adopted for fast computation. The numerical results confirm the desired 
accuracy in time and space, mass conservation, and energy dissipation property. Moreover, the extensive 
calculations in two- and three-dimensional spaces indicate that the proposed method has good capability to 
simulate spinodal decomposition in arbitrarily irregular domains.

1. Introduction

The phase-field method is a popular mathematical tool to describe many problems related to interfacial changes or phase transitions, see [1–3]

for particular applications. Most phase-field models are derived from the total free energy functionals of the governing systems. If we consider a 
system without the effect of an external force, then the solutions of phase-field models will dissipate the total energy. This property corresponds 
to the second law of thermodynamics. Therefore, the phase-field method is physically meaningful. The Cahn–Hilliard (CH) equation is a classical 
phase-field model, which was originally developed by Cahn and Hilliard [4] to describe the spinodal decomposition in binary fluid mixtures. For the 
detailed description of the physical, mathematical, and numerical derivations of the CH equation, please refer to [5]. For the applications of the CH 
equation in practical problems, such as two-phase fluid flows, topology optimization, tumor growth, and image inpainting, see [6]. In a bounded, 
smooth, and connected domain Ω, we consider the following total free energy functional:

𝐸(𝜙) = ∫
Ω

(
𝐹 (𝜙) + 𝜖2

2
|∇𝜙|2) 𝑑𝐱, (1)

where 𝜙 = 𝜙(𝐱, 𝑡) is the phase-field variable (or order parameter) which is used to distinguish two immiscible fluid materials. The nonlinear potential 
accounting for phase separation is 𝐹 (𝜙) = 0.25(𝜙2 −1)2. We assume 𝜙 = 1 and −1 in the bulk regions of different components. The value of 𝜙 changes 
smoothly from −1 to 1 across the interface between two materials. The thickness of this transition layer is related to the small positive constant 
𝜖. The nonlinear potential can be split into 𝐹𝑎(𝜙) = 𝜙4∕4 − (1 + 𝑟)𝜙2∕2 + 1∕4 and 𝐹𝑏(𝜙) = 𝑟𝜙2∕2. Here, 𝑟 > 0 is a constant. The original total energy 
functional can be expressed as the following equivalent form:
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𝐸(𝜙) = ∫
Ω

(
𝐹𝑎(𝜙) + 𝐹𝑏(𝜙) +

𝜖2

2
|∇𝜙|2) 𝑑𝐱. (2)

As a gradient flow of the total energy functional, Eq. (2), the CH model can be written as follows:

𝜕𝜙

𝜕𝑡
=𝑀Δ𝜇, (3)

𝜇 = 𝑓 (𝜙) + 𝑟𝜙− 𝜖2Δ𝜙, (4)

where 𝜇 = 𝛿𝐸(𝜙)∕𝛿𝜙 is the chemical potential and 𝑓 (𝜙) = 𝐹 ′
𝛼(𝜙) = 𝜙3 − (1 + 𝑟)𝜙. Here, 𝑀 > 0 is the mobility and we assume it is a constant for 

convenience. The zero Neumann boundary condition is applied, i.e., 𝐧 ⋅ ∇𝜙|𝜕Ω = 𝐧 ⋅ ∇𝜇|𝜕Ω = 0, where 𝐧 is the unit outward normal vector to the 
boundary of full domain, 𝜕Ω. Note that the CH equation generally does not satisfy the maximum principle (i.e., the value of 𝜙 is not bounded by −1
and 1). Now, we introduce a truncated form of 𝑓 (𝜙) [7], i.e.,

𝑓 (𝜙) =
{

𝜙3 −𝜙− 𝑟𝜙, if |𝜙| ≤,

(32 − 1)𝜙− 23 − 𝑟𝜙, otherwise.
(5)

Here, the threshold value  is large than 1. It can be observed that the original form of 𝑓 (𝜙) makes 𝑓 ′(𝜙) be not upper bounded, the truncation 
from in Eq. (5) fixes this problem and facilitates the construction of linear energy-stable time-marching scheme. For the applications of truncation on 
the CH models, see [8,9] and references therein. Furthermore, this truncation has also been used for the Swift–Hohenberg (SH) [10] and phase-field 
crystal (PFC) [11] phase-field models. In this work, we adopt the above truncated form and drop the superscript ̃ for convenience. By taking the 
time derivative of Eq. (1) with respect to time 𝑡, we have

𝑑

𝑑𝑡
𝐸(𝜙) = ∫

Ω

(
𝑓 (𝜙)𝜙𝑡 + 𝜖2∇𝜙 ⋅∇𝜙𝑡

)
𝑑𝐱 = ∫

Ω

(
𝑓 (𝜙) − 𝜖2Δ𝜙

)
𝜙𝑡 𝑑𝐱 + 𝜖2 ∫

𝜕Ω

𝜙𝑡𝐧 ⋅∇𝜙 𝑑𝑠

= ∫
Ω

𝜇Δ𝜇 𝑑𝐱 = −∫
Ω

|∇𝜇|2 𝑑𝐱 ≤ 0, (6)

where the homogeneous boundary condition is used. The above inequality indicates the energy dissipation property of the CH equation. By taking 
the time derivative to the total mass, ∫Ω 𝜙 𝑑𝐱, we obtain

𝑑

𝑑𝑡 ∫
Ω

𝜙 𝑑𝐱 = ∫
Ω

𝜕𝜙

𝜕𝑡
𝑑𝐱 =𝑀 ∫

Ω

Δ𝜇 𝑑𝐱 =𝑀 ∫
𝜕Ω

𝐧 ⋅∇𝜇 𝑑𝑠 = 0. (7)

From the above equality, we know that the mass conservation is another basic property of the CH equation.

With the development of computational techniques, the numerical simulation has been a popular approach to study the dynamics of the CH 
equation, please refer to [12–16] for typical numerical researches based on finite difference method (FDM), spectral method, and lattice Boltzmann 
method. To preserve the properties of energy dissipation and mass conservation at numerical level, Eyre [17] developed the famous nonlinear 
convex splitting method with first-order accuracy in time. Based on the convex splitting idea, Yan et al. [18] proposed a temporally second-order 
accurate and unconditionally energy-stable nonlinear scheme for the CH equation. Based on the fourth-order finite difference stencil in space and 
second-order convex splitting in time, Cheng et al. [19] developed a provably energy-stable compact scheme for the CH equation. For the CH 
model with logarithmic potential, Chen et al. [20] developed positivity-preserving and unconditionally stable convex splitting algorithm. For the 
CH type fluid systems and CH type surfactant system, the mass-conserved and energy-stable nonlinear convex splitting algorithms were developed 
[21–23]. The detailed error and convergence estimations of the numerical schemes for the CH model can be found in [24–27] and references therein. 
Furthermore, the nonlinear convex splitting method has been widely used to develop temporally high-order accurate and energy-stable methods 
for other phase-field models, such as the Swift–Hohenberg (SH) equation [28] and phase-field crystal (PFC) equation [29,30]. Different from the 
nonlinear convex splitting, the linear convex splitting treats the nonlinear terms in an explicit manner and introduces an appropriate stabilizer to 
satisfy the convexity. Based on the linear convex splitting, Lee [10] developed a non-iterative scheme with unconditional energy stability for the 
SH model. By combining with linear splitting method and strong stability-preserving (SSP) approach, Song [31] designed first- and second-order 
time-accurate methods for the binary CH equation. Similar with the linear splitting scheme, the linear stabilization scheme [8,32] and energy 
factorization scheme [33,34] are practical for phase-field problems. Moreover, recently developed Energy Quadratization (EQ) [35–37] and Scalar 
Auxiliary Variable (SAV) [38,39] methods also provide interesting approaches to design structure-preserving schemes for the CH type models.

Although there have been numerous numerical algorithms for simulating the CH model, most of them are limited to regular domains. Actually, 
the spinodal decomposition or flow coupled phase separations occur inside irregular regions in real applications. The geometry of irregular domain 
also affects the evolutional dynamics. Therefore, we need to develop a practical numerical method to simulate the CH model in arbitrary domains 
with complex shapes. For the CH equation in complex domains, a simple approach is to consider a ternary CH system and fix one component as 
irregular regions [40–42]. During the evolution, the fixed component always keeps the initial state. Thus, the evolution of other two components is 
naturally constrained in the irregular domains. Based on this approach, Liu et al. [43] calculated the fluid-structure interaction in which the no-slip 
condition on the solid boundary was achieved by the immersed boundary method (IBM). Later, this kind of treatment was extended to compute 
three-dimensional two-phase fluid flows with moving contact line in irregular domains [44]. It should be noted that this approach still leads to the 
overlap across the solid phase and liquid phase. Furthermore, the energy dissipation law with respect to the original CH energy, Eq. (1) was not 
analytically proved in [40,41].

To avoid the formation of overlapped phases, the authors in [45] transformed the original CH equation into the complex domain by introducing a 
boundary indicator. The first-order linear splitting scheme was adopted in their work to perform discretization in time. Although the discrete version 
of mass conservation was proved, the analytical energy estimation was not proved. In the present work, we developed novel fully discrete schemes 
by combining the FDM in space and linear IMEX Runge–Kutta approaches in time. A simple boundary control function is introduced to construct an 
equivalent CH model in irregular regions. Because of the property of boundary control function at discrete version, the proofs of mass conservation 
and unconditional energy stability can be rigorously established. Furthermore, the proposed schemes are efficient and easy to implement because 
we only need to solve several linear elliptic type equations in each time step. To our best knowledge, this is the first work focusing on efficiently 
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Fig. 1. Schematic illustrations of irregular domain Ωin, exterior region Ωout, and irregular boundary Γ.

Fig. 2. Shaped region is Ω𝑑

in
, the boundary of shaped region is Γ𝑑 . The value of 𝐺𝑖𝑗 at points (∙,◦) and (×,◦) is one and zero, respectively.

Fig. 3. The continuous irregular domain Ωin is approximated by Ω𝑑
in

with the refinement of mesh size ℎ. The mesh size is shown under each figure.

linear, second-order accurate, and fully discrete finite difference methods with provable energy stability for the CH equation in arbitrarily irregular 
domains.

The remainder of this article is organized as follows. In Section 2, the fully discrete numerical schemes are present. The discrete versions of 
mass conservation and energy stability are analytically proved. In Section 3, we perform extensive numerical simulations to validate the accuracy, 
stability, and capability of the proposed schemes. In Section 4, the conclusions are drawn.

2. Fully discrete numerical schemes

In this section, we let the arbitrarily complex domain Ωin be embedded into a regular domain Ω. The boundary of Ωin is denoted by Γ. The 
schematic illustration is shown in Fig. 1. We define a boundary control function 𝐶 = 𝐶(𝐱) and let 𝐶 = 1 in Ωin and 𝐶 = 0 in Ωout =Ω∕Ωin. In Ωin, the 
original equations, Eqs. (3)–(4), can be recast to be

𝜕𝜙

𝜕𝑡
=∇ ⋅ (𝑀𝐶∇𝜇), (8)

𝜇 = 𝑓 (𝜙) + 𝑟𝜙− 𝜖2∇ ⋅ (𝐶∇𝜙). (9)

It can be observed that Eqs. (8)–(9) and Eqs. (3)–(4) are equivalent in the irregular domain. In Ωout, Eqs. (8) and (9) do not evolve. On the boundary 
of irregular domain, i.e., Γ, we have

𝐶∇𝜙 = 𝐶∇𝜇 = 𝟎,

which indicates that the homogeneous Neumann boundary can be assumed on Γ.

To propose the computational schemes for solving the CH equation in irregular domains, the FDM is used to discretize the computational 
domain. For convenience, we only describe the discretization in two-dimensional (2D) space, the extension to three-dimensional (3D) space is 
straightforward. Let a full domain (rectangular domain) be Ω = (0, 𝐿𝑥) × (0, 𝐿𝑦). The uniform mesh size is defined as ℎ = 𝐿𝑥∕𝑁𝑥 =𝐿𝑦∕𝑁𝑦, where 𝑁𝑥

and 𝑁𝑦 are positive integers. The discrete version of full domain is Ω𝑑 = {(𝑥𝑖, 𝑦𝑗 ) ∶ 𝑥𝑖 = (𝑖 − 0.5)ℎ, 𝑦𝑗 = (𝑗 − 0.5)ℎ}, where 1 ≤ 𝑖 ≤𝑁𝑥 and 1 ≤ 𝑗 ≤𝑁𝑦. 
The uniform time step is defined as Δ𝑡 = 𝑇 ∕𝑁𝑡, where 𝑇 is the total computational time, 𝑁𝑡 is the number of time iteration. Let 𝜙𝑛

𝑖𝑗
and 𝜇𝑛

𝑖𝑗
be the 

approximations of 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛Δ𝑡) and 𝜇(𝑥𝑖, 𝑦𝑗 , 𝑛Δ𝑡), respectively. The discrete boundary control function is defined as 𝐶𝑖𝑗 , we let 𝐶𝑖𝑗 = 1 in Ω𝑑
in

and 
𝐶𝑖𝑗 = 0 in Ω𝑑

out. Here, the discrete irregular domain and exterior region are defined as Ω𝑑
in
= Ω𝑑 ∩Ωin and Ω𝑑

out = Ω𝑑 ∩ Ωout, respectively. At the cell 
edges, we define 𝐺

𝑖+ 1
2 ,𝑗

=𝐺𝑖𝑗𝐺𝑖+1,𝑗 and 𝐺
𝑖,𝑗+ 1

2
=𝐺𝑖𝑗𝐺𝑖,𝑗+1. The schematic illustrations of discrete irregular domain Ω𝑑

in
, discrete staggered boundary 

Γ𝑑 , and the distribution of 𝐺𝑖𝑗 are shown in Fig. 2. As we refine the grid size, the discrete irregular domain Ω𝑑
in

converges to Ωin, see Fig. 3.

The semi-discrete scheme for the CH equation in space can be postulated as

𝜕𝜙𝑖𝑗 =∇𝑑 ⋅ (𝑀𝐶𝑖𝑗∇𝑑𝜇𝑖𝑗 ), (10)

𝜕𝑡
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𝜇𝑖𝑗 = 𝑓 (𝜙𝑖𝑗 ) + 𝑟𝜙𝑖𝑗 − 𝜖2∇𝑑 ⋅ (𝐶𝑖𝑗∇𝑑𝜙𝑖𝑗 ). (11)

If 𝐱
𝑖+ 1

2 ,𝑗
is the point locating on the discrete staggered boundary Γ𝑑 , then we have

𝐶
𝑖+ 1

2 ,𝑗
∇𝑑𝜙𝑖+ 1

2 ,𝑗
= 0 and 𝐶

𝑖+ 1
2 ,𝑗

∇𝑑𝜇𝑖+ 1
2 ,𝑗

= 0

because 𝐶
𝑖+ 1

2 ,𝑗
= 0. If 𝐱

𝑖,𝑗+ 1
2

is the point locating on the discrete staggered boundary Γ𝑑 , the similar conclusions are obtained. Therefore, the discrete 
version of homogeneous Neumann boundary condition on Γ𝑑 can be assumed. The discrete gradient operators are defined to be

𝐷𝑥𝜙𝑖+ 1
2 ,𝑗

=
𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗

ℎ
and 𝐷𝑥𝜙𝑖,𝑗+ 1

2
=

𝜙𝑖,𝑗+1 − 𝜙𝑖𝑗

ℎ
.

On the boundaries of discrete full domain Ω𝑑 , we impose the following homogeneous Neumann boundary condition

𝐷𝑥𝜙 1
2 ,𝑗

=𝐷𝑥𝜙𝑁𝑥+
1
2 ,𝑗

=𝐷𝑦𝜙𝑖,
1
2
=𝐷𝑦𝜙𝑖,𝑁𝑦+

1
2
= 0.

The discrete divergence operator is defined to be

∇𝑑 ⋅
(
𝐶𝑖𝑗∇𝑑𝜙𝑖𝑗

)
=

𝐶
𝑖+ 1

2 ,𝑗
(𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗 ) −𝐶

𝑖− 1
2 ,𝑗

(𝜙𝑖𝑗 − 𝜙𝑖−1,𝑗 )

ℎ2

+
𝐶
𝑖,𝑗+ 1

2
(𝜙𝑖,𝑗+1 −𝜙𝑖𝑗 ) −𝐶

𝑖,𝑗− 1
2
(𝜙𝑖𝑗 −𝜙𝑖,𝑗−1)

ℎ2
.

For two arbitrary discrete functions 𝜓𝑖𝑗 and 𝜌𝑖𝑗 , we define the discrete 𝐿2-inner products in a discrete irregular domain Ω𝑑
in

as

(𝜓,𝜌)𝑑 = ℎ2
𝑁𝑥∑
𝑖=1

𝑁𝑦∑
𝑗=1

𝐶𝑖𝑗𝜓𝑖𝑗𝜌𝑖𝑗 , (12)

(∇𝑑𝜓,∇𝑑𝜌)𝑒 = ℎ2
⎛⎜⎜⎝
𝑁𝑥∑
𝑖=0

𝑁𝑦∑
𝑗=1

𝐶
𝑖+ 1

2 ,𝑗
𝐷𝑥𝜓𝑖+ 1

2 ,𝑗
𝐷𝑥𝜌𝑖+ 1

2 ,𝑗
+

𝑁𝑥∑
𝑖=1

𝑁𝑦∑
𝑗=0

𝐶
𝑖,𝑗+ 1

2
𝐷𝑦𝜓𝑖,𝑗+ 1

2
𝐷𝑦𝜌𝑖,𝑗+ 1

2

⎞⎟⎟⎠ . (13)

The discrete 𝐿2-norms related to 𝜓𝑖𝑗 and ∇𝑑𝜓𝑖𝑗 are ‖𝜓‖2
𝑑
= (𝜓, 𝜓)𝑑 and ‖∇𝑑𝜓‖2𝑒 = (∇𝑑𝜓, ∇𝑑𝜓)𝑒. To simplify the notations, we let

∑
𝐶𝑖𝑗=1

=
𝑁𝑥∑
𝑖=1

𝑁𝑦∑
𝑗=1

𝐶𝑖𝑗 ,
∑

𝐶
𝑖+ 1

2 ,𝑗
=1

=
𝑁𝑥∑
𝑖=0

𝑁𝑦∑
𝑗=1

𝐶
𝑖+ 1

2 ,𝑗
,

∑
𝐶
𝑖,𝑗+ 1

2
=1

=
𝑁𝑥∑
𝑖=1

𝑁𝑦∑
𝑗=0

𝐶
𝑖,𝑗+ 1

2
. (14)

Theorem 2.1. From the definitions of discrete boundary control function and 𝐿2-inner products, the following relation holds(
𝜓,∇𝑑 ⋅ (𝐶∇𝑑𝜌)

)
𝑑
= −

(
∇𝑑𝜓,∇𝑑𝜌

)
𝑒
. (15)

Proof. By using the definitions in Eq. (14), we have(
𝜓,∇𝑑 ⋅ (𝐶∇𝑑𝜌)

)
𝑑
=

∑
𝐶𝑖𝑗=1

𝜓𝑖𝑗∇𝑑 ⋅ (𝐶𝑖𝑗∇𝑑𝜌𝑖𝑗 )

=
∑
𝐶𝑖𝑗=1

(
𝜓𝑖𝑗𝐶𝑖+ 1

2 ,𝑗

𝜌𝑖+1,𝑗 − 𝜌𝑖𝑗

ℎ2
−𝜓𝑖𝑗𝐶𝑖− 1

2 ,𝑗

𝜌𝑖𝑗 − 𝜌𝑖−1,𝑗

ℎ2

)
+

∑
𝐶𝑖𝑗=1

(
𝜓𝑖𝑗𝐶𝑖,𝑗+ 1

2

𝜌𝑖,𝑗+1 − 𝜌𝑖𝑗

ℎ2
−𝜓𝑖𝑗𝐶𝑖,𝑗− 1

2

𝜌𝑖𝑗 − 𝜌𝑖,𝑗−1

ℎ2

)

=
∑

𝐶
𝑖+ 1

2 ,𝑗
=1

(𝜓𝑖𝑗𝐷𝑥𝜌𝑖+ 1
2 ,𝑗

ℎ

)
−

∑
𝐶
𝑖− 1

2 ,𝑗
=1

(𝜓𝑖𝑗𝐷𝑥𝜌𝑖− 1
2 ,𝑗

ℎ

)

+
∑

𝐶
𝑖,𝑗+ 1

2
=1

(𝜓𝑖𝑗𝐷𝑦𝜌𝑖,𝑗+ 1
2

ℎ

)
−

∑
𝐶
𝑖,𝑗− 1

2
=1

(𝜓𝑖𝑗𝐷𝑦𝜌𝑖,𝑗− 1
2

ℎ

)

=
∑

𝐶
𝑖+ 1

2 ,𝑗
=1

(𝜓𝑖𝑗𝐷𝑥𝜌𝑖+ 1
2 ,𝑗

ℎ

)
−

∑
𝐶
𝑖+ 1

2 ,𝑗
=1

(𝜓𝑖+1,𝑗𝐷𝑥𝜌𝑖+ 1
2 ,𝑗

ℎ

)

+
∑

𝐶
𝑖,𝑗+ 1

2
=1

(𝜓𝑖𝑗𝐷𝑦𝜌𝑖,𝑗+ 1
2

ℎ

)
−

∑
𝐶
𝑖,𝑗+ 1

2
=1

(𝜓𝑖,𝑗+1𝐷𝑦𝜌𝑖,𝑗+ 1
2

ℎ

)

= −
∑

𝐶
𝑖+ 1

2 ,𝑗
=1

(
𝐷𝑥𝜓𝑖+ 1

2 ,𝑗
𝐷𝑥𝜌𝑖+ 1

2 ,𝑗

)
−

∑
𝐶
𝑖,𝑗+ 1

2
=1

(
𝐷𝑦𝜓𝑖,𝑗+ 1

2
𝐷𝑦𝜌𝑖,𝑗+ 1

2

)
= −

(
∇𝑑𝜓,∇𝑑𝜌

)
𝑒
.

The proof is completed. □
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Note that the above relation will be used in the following contents in this section.

2.1. Temporally first-order accurate scheme

Based on the SSP-IMEX RK approach, the authors in [31] pointed that the one-step and two-step linear discretization in time could lead to 
temporally first-order accurate schemes. We note that the well-known linear convex splitting method [17] is a typical one-step discretization in 
time. Different from the scheme proposed in [45], we herein provide an alternative scheme by combining the two-step IMEX RK method in time 
and the FDM in space. The fully discrete scheme consists of the following two steps

Step 1. With the known 𝜙𝑛
𝑖𝑗

, we update 𝜙∗
𝑖𝑗

from the following equations

𝜙∗
𝑖𝑗 = 𝜙𝑛

𝑖𝑗 +Δ𝑡∇𝑑 ⋅ (𝑀𝐶𝑖𝑗∇𝑑𝜇
∗
𝑖𝑗 ), (16)

𝜇∗
𝑖𝑗 = 𝑓 (𝜙𝑛

𝑖𝑗 ) + 𝑟𝜙∗
𝑖𝑗 − 𝜖2∇𝑑 ⋅ (𝐶𝑖𝑗∇𝑑𝜙

∗
𝑖𝑗 ). (17)

Step 2. With computed 𝜙𝑛
𝑖𝑗

and 𝜙∗
𝑖𝑗

, we update 𝜙𝑛+1 from the following equations

𝜙𝑛+1
𝑖𝑗

= 1
2
𝜙𝑛
𝑖𝑗 +

1
2
𝜙∗
𝑖𝑗 +

Δ𝑡
2
∇𝑑 ⋅ (𝑀𝐶𝑖𝑗∇𝑑𝜇

𝑛+1
𝑖𝑗

), (18)

𝜇𝑛+1
𝑖𝑗

= 𝑓 (𝜙∗
𝑖𝑗 ) + 𝑟𝜙𝑛+1

𝑖𝑗
− 𝜖2∇𝑑 ⋅ (𝐶𝑖𝑗∇𝑑𝜙

𝑛+1
𝑖𝑗

). (19)

Theorem 2.2. The solutions in Step 1 and Step 2 satisfy the mass conservation, i.e., (𝜙∗, 𝟏)𝑑 = (𝜙𝑛, 𝟏)𝑑 and (𝜙𝑛+1, 𝟏)𝑑 = (𝜙𝑛, 𝟏)𝑑 .

Proof. By taking the discrete 𝐿2-inner product of Eq. (16) with 𝟏, we get(
𝜙∗,𝟏

)
𝑑
= (𝜙𝑛,𝟏)𝑑 +Δ𝑡

(
∇𝑑 ⋅ (𝑀𝐶∇𝑑𝜇

∗),𝟏
)
𝑑

= (𝜙𝑛,𝟏)𝑑 −Δ𝑡
(
𝑀𝐶∇𝑑𝜇

∗,∇𝑑𝟏
)
𝑒
= (𝜙𝑛,𝟏)𝑑 . (20)

Here, the conclusion in Theorem 2.1 is used. By taking the discrete 𝐿2-inner product of Eq. (18) with 𝟏, we get(
𝜙𝑛+1 −𝜙𝑛,𝟏

)
𝑑
= 1

2
(
𝜙∗ − 𝜙𝑛,𝟏

)
𝑑
+ Δ𝑡

2
(
∇𝑑 ⋅ (𝑀𝐶∇𝑑𝜇

𝑛+1),𝟏
)
𝑑

= 1
2
(
𝜙∗ − 𝜙𝑛,𝟏

)
𝑑
−Δ𝑡

(
𝑀𝐶∇𝑑𝜇

𝑛+1,∇𝑑𝟏
)
𝑒
= 1

2
(
𝜙∗ − 𝜙𝑛,𝟏

)
𝑑
= 0. (21)

The above equality indicates (𝜙𝑛+1, 𝟏)𝑑 = (𝜙𝑛, 𝟏)𝑑 . The proof is completed. □

Theorem 2.3. With  = 1.2 and 𝑟 ≥ 4.32, the following energy inequality unconditionally holds

𝐸(𝜙𝑛+1) ≤𝐸(𝜙𝑛), (22)

where the discrete energy in Ω𝑑
in

at 𝑛-th temporal level is given as

𝐸(𝜙𝑛) = (𝐹𝑎(𝜙𝑛),𝟏)𝑑 +
𝑟

2
‖𝜙𝑛‖2

𝑑
+ 𝜖2

2
‖√𝐶∇𝑑𝜙

𝑛‖2𝑒 .
Proof. By multiplying Eq. (16) with 𝜇∗

𝑖𝑗
and taking the discrete 𝐿2-inner product, we have

(𝜙∗ −𝜙𝑛,𝜇∗)𝑑 =Δ𝑡
(
∇𝑑 ⋅ (𝑀𝐶∇𝑑𝜇

∗), 𝜇∗)
𝑑
= −𝑀Δ𝑡‖√𝐶∇𝑑𝜇

∗‖2𝑒 , (23)

where the conclusion in Theorem 2.1 is used. By multiplying Eq. (17) with 𝜙∗
𝑖𝑗
−𝜙𝑛

𝑖𝑗
and taking the discrete 𝐿2-inner product, we have

(𝜇∗, 𝜙∗ −𝜙𝑛)𝑑 = (𝑓 (𝜙𝑛), 𝜙∗ − 𝜙𝑛)𝑑
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I

+ 𝑟

2
(‖𝜙∗‖2

𝑑
− ‖𝜙𝑛‖2

𝑑
+ ‖𝜙∗ −𝜙𝑛‖2

𝑑

)
+ 𝜖2

2

(‖√𝐶∇𝑑𝜙
∗‖2𝑒 − ‖√𝐶∇𝑑𝜙

𝑛‖2𝑒 + ‖√𝐶∇𝑑 (𝜙∗ −𝜙𝑛)‖2𝑒) , (24)

where the equality (𝑝, 𝑝 − 𝑞) = 1
2

[
𝑝2 − 𝑞2 + (𝑝− 𝑞)2

]
is used. By the Taylor expansion, the term I is expressed to be

(𝑓 (𝜙𝑛), 𝜙∗ − 𝜙𝑛)𝑑 = (𝐹𝑎(𝜙∗) − 𝐹𝑎(𝜙𝑛),𝟏)𝑑 −
𝑓 ′(𝜒1)

2
‖𝜙∗ − 𝜙𝑛‖2

𝑑
, (25)

where 𝜒1 is a constant between 𝜙∗ and 𝜙𝑛. By combining Eqs. (23)–(25) and dropping some positive terms, we derive

𝐸(𝜙∗) −𝐸(𝜙𝑛) + 𝑟

2
‖𝜙∗ −𝜙𝑛‖2

𝑑
≤ 𝑓 ′(𝜒1)

2
‖𝜙∗ −𝜙𝑛‖2

𝑑
. (26)

By multiplying Eq. (18) with 𝜇𝑛+1
𝑖𝑗

and taking the discrete 𝐿2-inner product, we have

(𝜙𝑛+1 −𝜙𝑛,𝜇𝑛+1)𝑑 = (𝜙∗ −𝜙𝑛+1, 𝜇𝑛+1)𝑑 −𝑀Δ𝑡‖√𝐶∇𝑑𝜇
𝑛+1‖2𝑒 . (27)

By multiplying Eq. (19) with 𝜙𝑛+1
𝑖𝑗

−𝜙∗
𝑖𝑗

and taking the discrete 𝐿2-inner product, we get
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(𝜇𝑛+1, 𝜙𝑛+1 −𝜙∗)𝑑 = (𝑓 (𝜙∗), 𝜙𝑛+1 −𝜙∗)𝑑 +
𝑟

2
(‖𝜙𝑛+1‖2

𝑑
− ‖𝜙∗‖2

𝑑
+ ‖𝜙𝑛+1 − 𝜙∗‖2

𝑑

)
+ 𝜖2

2

(‖√𝐶∇𝑑𝜙
𝑛+1‖2𝑒 − ‖√𝐶∇𝑑𝜙

∗‖2𝑒 + ‖√𝐶∇𝑑 (𝜙𝑛+1 −𝜙∗)‖2𝑒) . (28)

By following the same procedures in (23)–(26), we rewrite the above equality to be

(𝜇𝑛+1, 𝜙𝑛+1 −𝜙∗)𝑑 =𝐸(𝜙𝑛+1) −𝐸(𝜙∗) + 𝑟

2
‖𝜙𝑛+1 − 𝜙∗‖2

𝑑
+ 𝜖2

2
‖√𝐶∇𝑑 (𝜙𝑛+1 − 𝜙∗)‖2𝑒

−
𝑓 ′(𝜒2)

2
‖𝜙𝑛+1 −𝜙∗‖2

𝑑
. (29)

By multiplying Eq. (19) with 𝜙𝑛+1
𝑖𝑗

−𝜙𝑛
𝑖𝑗

and taking the discrete 𝐿2-inner product, we get

(𝜇𝑛+1, 𝜙𝑛+1 −𝜙𝑛)𝑑 = (𝑓 (𝜙∗), 𝜙𝑛+1 − 𝜙𝑛)𝑑 +
𝑟

2
(‖𝜙𝑛+1‖2

𝑑
− ‖𝜙𝑛‖2

𝑑
+ ‖𝜙𝑛+1 −𝜙𝑛‖2

𝑑

)
+ 𝜖2

2

(‖√𝐶∇𝑑𝜙
𝑛+1‖2𝑒 − ‖√𝐶∇𝑑𝜙

𝑛‖2𝑒 + ‖√𝐶∇𝑑 (𝜙𝑛+1 − 𝜙𝑛)‖2𝑒) . (30)

By using the Taylor expansion, we have

𝐹𝑎(𝜙𝑛+1
𝑖𝑗

) − 𝐹𝑎(𝜙∗
𝑖𝑗 ) = 𝑓 (𝜙∗

𝑖𝑗 )(𝜙
𝑛+1
𝑖𝑗

−𝜙∗
𝑖𝑗 ) +

𝑓 ′(𝜒2)
2

(𝜙𝑛+1
𝑖𝑗

− 𝜙∗
𝑖𝑗 )

2,

𝐹𝑎(𝜙𝑛
𝑖𝑗 ) − 𝐹𝑎(𝜙∗

𝑖𝑗 ) = 𝑓 (𝜙∗
𝑖𝑗 )(𝜙

𝑛
𝑖𝑗 −𝜙∗

𝑖𝑗 ) +
𝑓 ′(𝜒3)

2
(𝜙𝑛

𝑖𝑗 − 𝜙∗
𝑖𝑗 )

2.

By combining the above equalities together and taking the discrete inner product, we have

(𝑓 (𝜙∗), 𝜙𝑛+1 −𝜙𝑛)𝑑 = (𝐹𝑎(𝜙𝑛+1) − 𝐹𝑎(𝜙𝑛),𝟏)𝑑 −
𝑓 ′(𝜒2)

2
‖𝜙𝑛+1 − 𝜙∗‖2

𝑑
+

𝑓 ′(𝜒3)
2

‖𝜙𝑛 − 𝜙∗‖2
𝑑
. (31)

By combining Eqs. (30) and (31), we derive

(𝜇𝑛+1, 𝜙𝑛+1 −𝜙𝑛)𝑑 =𝐸(𝜙𝑛+1) −𝐸(𝜙𝑛) + 𝑟

2
‖𝜙𝑛+1 − 𝜙𝑛‖2

𝑑
+ 𝜖2

2
‖√𝐶∇𝑑 (𝜙𝑛+1 − 𝜙𝑛)‖2𝑒

−
𝑓 ′(𝜒2)

2
‖𝜙𝑛+1 − 𝜙∗‖2

𝑑
+

𝑓 ′(𝜒3)
2

‖𝜙𝑛 − 𝜙∗‖2
𝑑
. (32)

By combining Eqs. (27), (29), (32), inequality (26), and dropping some unnecessary positive terms, we obtain

𝐸(𝜙𝑛+1) −𝐸(𝜙𝑛) + 1
2

(
𝑟

2
−

𝑓 ′(𝜒1)
2

+
𝑓 ′(𝜒3)

2

)‖𝜙∗ −𝜙𝑛‖2
𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I

+ 1
2

(
𝑟

2
− 𝑓 ′(𝜒2)

)‖𝜙𝑛+1 −𝜙∗‖2
𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
II

≤ −𝑀Δ𝑡
2

‖√𝐶∇𝑑𝜇‖2𝑒 ≤ 0. (33)

To let the term I be non-negative, we require 𝑟 ≥ max(𝑓 ′(𝜒1)) − min(𝑓 ′(𝜒3)) = 32. To let term II be non-negative, we require 𝑟

2 ≥ max(𝑓 ′(𝜒2)) =
32 − 1 − 𝑟. Because  = 1.2 is set, we have 𝑟 > 4.32. The inequality (33) implies the energy is dissipative in time. The proof is completed. □

2.2. Temporally second-order accurate method

The IMEX RK approach provides a flexible idea to develop temporally second-order accurate method by adding one more calculation step. As 
mentioned in [31,46], the two-step method is hard to satisfy second-order accuracy and the form of three-step method is not unique. We herein 
adopt a particular set of coefficients in [46] and design the fully discrete scheme consisting of the three steps

Step 1. With the known 𝜙𝑛
𝑖𝑗

, we update 𝜙∗
𝑖𝑗

from the following equations

𝜙∗
𝑖𝑗 = 𝜙𝑛

𝑖𝑗 +Δ𝑡∇𝑑 ⋅ (𝑀𝐶𝑖𝑗∇𝑑𝜇
∗
𝑖𝑗 ), (34)

𝜇∗
𝑖𝑗 = 𝑓 (𝜙𝑛

𝑖𝑗 ) + 𝑟𝜙∗
𝑖𝑗 − 𝜖2∇𝑑 ⋅ (𝐶𝑖𝑗∇𝑑𝜙

∗
𝑖𝑗 ). (35)

Step 2. With computed 𝜙𝑛
𝑖𝑗

and 𝜙∗
𝑖𝑗

, we update 𝜙𝑛+1 from the following equations

𝜙∗∗
𝑖𝑗 = 3

2
𝜙𝑛
𝑖𝑗 −

1
2
𝜙∗
𝑖𝑗 +

Δ𝑡
2
∇𝑑 ⋅ (𝑀𝐶𝑖𝑗∇𝑑𝜇

∗∗
𝑖𝑗 ), (36)

𝜇∗∗
𝑖𝑗 = 𝑓 (𝜙∗

𝑖𝑗 ) + 𝑟𝜙∗∗
𝑖𝑗 − 𝜖2∇𝑑 ⋅ (𝐶𝑖𝑗∇𝑑𝜙

∗∗
𝑖𝑗 ). (37)

Step 3. With the known 𝜙∗∗
𝑖𝑗

, we update 𝜙𝑛+1
𝑖𝑗

from the following equations

𝜙𝑛+1
𝑖𝑗

= 𝜙∗∗
𝑖𝑗 +Δ𝑡∇𝑑 ⋅ (𝑀𝐶𝑖𝑗∇𝑑𝜇

𝑛+1
𝑖𝑗

), (38)

𝜇𝑛+1
𝑖𝑗

= 𝑓 (𝜙∗∗
𝑖𝑗 ) + 𝑟𝜙𝑛+1

𝑖𝑗
− 𝜖2∇𝑑 ⋅ (𝐶𝑖𝑗∇𝑑𝜙

𝑛+1
𝑖𝑗

). (39)

Theorem 2.4. The solutions in Steps 1, 2, and 3 satisfy the mass conservation, i.e., (𝜙∗, 𝟏)𝑑 = (𝜙𝑛, 𝟏)𝑑 , (𝜙∗∗, 𝟏)𝑑 = (𝜙𝑛, 𝟏)𝑑 , and (𝜙𝑛+1, 𝟏)𝑑 = (𝜙𝑛, 𝟏)𝑑 .
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Proof. By taking the discrete 𝐿2-inner product of Eq. (34) with 𝟏, we have(
𝜙∗,𝟏

)
𝑑
= (𝜙𝑛,𝟏)𝑑 −Δ𝑡

(
𝑀𝐶∇𝑑𝜇

∗,∇𝑑𝟏
)
𝑒
= (𝜙𝑛,𝟏)𝑑 . (40)

By taking the discrete 𝐿2-inner product of Eq. (36) with 𝟏, we have(
𝜙∗∗ − 𝜙𝑛,𝟏

)
𝑑
= 1

2
(
𝜙𝑛 − 𝜙∗,𝟏

)
𝑑
−Δ𝑡

(
𝑀𝐶∇𝑑𝜇

∗,∇𝑑𝟏
)
𝑒
= 0. (41)

By taking the discrete 𝐿2-inner product of Eq. (38) with 𝟏, we have(
𝜙𝑛+1,𝟏

)
𝑑
=
(
𝜙∗∗,𝟏

)
𝑑
−Δ𝑡

(
𝑀𝐶∇𝑑𝜇

∗,∇𝑑𝟏
)
𝑒
=
(
𝜙∗∗,𝟏

)
𝑑
. (42)

Because we have obtained (𝜙∗∗, 𝟏)𝑑 = (𝜙𝑛, 𝟏)𝑑 in Eq. (41). From (𝜙𝑛+1, 𝟏)𝑑 = (𝜙∗∗, 𝟏)𝑑 in Eq. (42), we derive (𝜙𝑛+1, 𝟏)𝑑 = (𝜙𝑛, 𝟏)𝑑 . The proof is com-

pleted. □

Theorem 2.5. With  = 1.2 and 𝑟 ≥ 9.64, the following energy inequality unconditionally holds

𝐸(𝜙𝑛+1) + 3
2
𝐸(𝜙∗) ≤ 5

2
𝐸(𝜙𝑛), (43)

Proof. By multiplying 𝜇∗
𝑖𝑗

to Eq. (34) and taking the discrete 𝐿2-inner product, we get

(𝜙∗ −𝜙𝑛,𝜇∗)𝑑 =Δ𝑡
(
∇𝑑 ⋅ (𝑀𝐶∇𝑑𝜇

∗), 𝜇∗)
𝑑
= −𝑀Δ𝑡‖√𝐶∇𝑑𝜇

∗‖2𝑒 . (44)

By multiplying Eq. (35) with 𝜙∗
𝑖𝑗
−𝜙𝑛

𝑖𝑗
and taking the discrete 𝐿2-inner product, we have

(𝜇∗, 𝜙∗ −𝜙𝑛)𝑑 =𝐸(𝜙∗) −𝐸(𝜙𝑛) + 𝑟

2
‖𝜙∗ −𝜙𝑛‖2

𝑑
+ 𝜖2

2
‖√𝐶∇𝑑 (𝜙∗ − 𝜙𝑛)‖2𝑒 − 𝑓 ′(𝜉1)

2
‖𝜙∗ −𝜙𝑛‖2

𝑑
, (45)

where the discrete summation by parts in Theorem 2 and Taylor expansion are used. By summing Eqs. (44) and (45), we have

𝐸(𝜙∗) −𝐸(𝜙𝑛) + 𝑟

2
‖𝜙∗ −𝜙𝑛‖2

𝑑
+ 𝜖2

2
‖√𝐶∇𝑑 (𝜙∗ −𝜙𝑛)‖2𝑒 − 𝑓 ′(𝜉1)

2
‖𝜙∗ − 𝜙𝑛‖2

𝑑

= −𝑀Δ𝑡‖√𝐶∇𝑑𝜇
∗‖2𝑒 . (46)

By rewriting Eq. (36), we have

3
2
(𝜙∗∗

𝑖𝑗 −𝜙𝑛
𝑖𝑗 ) +

1
2
(𝜙∗

𝑖𝑗 − 𝜙∗∗
𝑖𝑗 ) =

Δ𝑡
2
∇𝑑 ⋅ (𝑀𝐶𝑖𝑗∇𝑑𝜇

∗∗
𝑖𝑗 ). (47)

By multiplying 𝜇∗∗
𝑖𝑗

on the above equation and taking the discrete 𝐿2-inner product, we have

3
2
(𝜙∗∗ −𝜙𝑛,𝜇∗∗)𝑑 +

1
2
(𝜙∗ − 𝜙∗∗, 𝜇∗∗)𝑑 = −𝑀Δ𝑡

2
‖√𝐶∇𝑑𝜇

∗∗‖2𝑒 . (48)

By multiplying Eq. (37) with 𝜙∗∗
𝑖𝑗

− 𝜙∗
𝑖𝑗

and performing the discrete 𝐿2-inner product, we get

(𝜇∗∗, 𝜙∗∗ − 𝜙∗)𝑑 = (𝑓 (𝜙∗), 𝜙∗∗ − 𝜙∗)𝑑
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I

+ 𝑟

2
(‖𝜙∗∗‖2

𝑑
− ‖𝜙∗‖2

𝑑
+ ‖𝜙∗∗ − 𝜙∗‖2

𝑑

)
+ 𝜖2

2

(‖√𝐶∇𝑑𝜙
∗∗‖2𝑒 − ‖√𝐶∇𝑑𝜙

∗‖2𝑒 + ‖√𝐶∇𝑑 (𝜙∗∗ − 𝜙∗)‖2𝑒) . (49)

By the Taylor expansion, the term I is

(𝑓 (𝜙∗), 𝜙∗∗ − 𝜙∗)𝑑 = (𝐹𝑎(𝜙∗∗) − 𝐹𝑎(𝜙∗),𝟏)𝑑 −
𝑓 ′(𝜉2)

2
‖𝜙∗∗ − 𝜙∗‖2

𝑑
. (50)

Then, Eq. (49) is rewritten to be

(𝜇∗∗, 𝜙∗∗ − 𝜙∗)𝑑 =𝐸(𝜙∗∗) −𝐸(𝜙∗) + 𝑟

2
‖𝜙∗∗ −𝜙∗‖2

𝑑
+ 𝜖2

2
‖√𝐶∇𝑑 (𝜙∗∗ − 𝜙∗)‖2𝑒 − 𝑓 ′(𝜉2)

2
‖𝜙∗∗ −𝜙∗‖2

𝑑
. (51)

By multiplying 𝜙∗∗
𝑖𝑗

− 𝜙𝑛
𝑖𝑗

on Eq. (37) and performing the discrete 𝐿2-inner product, we have

(𝜇∗∗, 𝜙∗∗ − 𝜙𝑛)𝑑 = (𝑓 (𝜙∗), 𝜙∗∗ −𝜙𝑛)𝑑 +
𝑟

2
(‖𝜙∗∗‖2

𝑑
− ‖𝜙𝑛‖2

𝑑
+ ‖𝜙∗∗ −𝜙𝑛‖2

𝑑

)
+ 𝜖2

2

(‖√𝐶∇𝑑𝜙
∗∗‖2𝑒 − ‖√𝐶∇𝑑𝜙

𝑛‖2𝑒 + ‖√𝐶∇𝑑 (𝜙∗∗ −𝜙𝑛)‖2𝑒) . (52)

By the Taylor expansion, we have

𝐹𝑎(𝜙∗∗
𝑖𝑗 ) − 𝐹𝑎(𝜙∗

𝑖𝑗 ) = 𝑓 (𝜙∗
𝑖𝑗 )(𝜙

∗∗
𝑖𝑗 − 𝜙∗

𝑖𝑗 ) +
𝑓 ′(𝜉2)

2
(𝜙∗∗

𝑖𝑗 − 𝜙∗
𝑖𝑗 )

2,

𝐹𝑎(𝜙𝑛
𝑖𝑗 ) − 𝐹𝑎(𝜙∗

𝑖𝑗 ) = 𝑓 (𝜙∗
𝑖𝑗 )(𝜙

𝑛
𝑖𝑗 − 𝜙∗

𝑖𝑗 ) +
𝑓 ′(𝜉3)

2
(𝜙𝑛

𝑖𝑗 − 𝜙∗
𝑖𝑗 )

2.

By combing the above equalities together and performing the discrete inner product, we get

(𝑓 (𝜙∗), 𝜙∗∗ − 𝜙𝑛)𝑑 = (𝐹𝑎(𝜙∗∗) − 𝐹𝑎(𝜙𝑛),𝟏)𝑑 −
𝑓 ′(𝜉2)‖𝜙∗∗ − 𝜙∗‖2

𝑑
+

𝑓 ′(𝜉3)‖𝜙𝑛 −𝜙∗‖2
𝑑
. (53)
2 2
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Then, Eq. (52) is recast to be

(𝜇∗∗, 𝜙∗∗ − 𝜙𝑛)𝑑 =𝐸(𝜙∗∗) −𝐸(𝜙𝑛) + 𝑟

2
‖𝜙∗∗ − 𝜙𝑛‖2

𝑑
+ 𝜖2

2
‖√𝐶∇𝑑 (𝜙∗∗ − 𝜙𝑛)‖2𝑒

−
𝑓 ′(𝜉2)

2
‖𝜙∗∗ −𝜙∗‖2

𝑑
+

𝑓 ′(𝜉3)
2

‖𝜙𝑛 − 𝜙∗‖2
𝑑
. (54)

By combining Eqs. (48), (51), and (54), the following identity is obtained

𝐸(𝜙∗∗) − 3
2
𝐸(𝜙𝑛) + 1

2
𝐸(𝜙∗) + 3𝑟

4
‖𝜙∗∗ −𝜙𝑛‖2

𝑑
+ 3𝜖2

4
‖√𝐶∇𝑑 (𝜙∗∗ −𝜙𝑛)‖2𝑒

−
3𝑓 ′(𝜉2)

4
‖𝜙∗∗ − 𝜙∗‖2

𝑑
+

3𝑓 ′(𝜉3)
4

‖𝜙𝑛 − 𝜙∗‖2
𝑑
− 𝑟

4
‖𝜙∗∗ − 𝜙∗‖2

𝑑
− 𝜖2

4
‖√𝐶∇𝑑 (𝜙∗∗ − 𝜙∗)‖2𝑒

+
𝑓 ′(𝜉2)

4
‖𝜙∗∗ − 𝜙∗‖2

𝑑
= −𝑀Δ𝑡

2
‖√𝐶∇𝑑𝜇

∗∗‖2𝑒 . (55)

By combining Eqs. (46) and (55) together, we derive

𝐸(𝜙∗∗) − 5
2
𝐸(𝜙𝑛) + 3

2
𝐸(𝜙∗) + 3𝑟

4
‖𝜙∗∗ −𝜙𝑛‖2

𝑑
+ 3𝜖2

4
‖√𝐶∇𝑑 (𝜙∗∗ − 𝜙𝑛)‖2𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I

𝜖2

2
‖√𝐶∇𝑑 (𝜙∗ − 𝜙𝑛)‖2𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
II

+
(
𝑟

2
−

𝑓 ′(𝜉1)
2

+
3𝑓 ′(𝜉3)

4

)‖𝜙𝑛 − 𝜙∗‖2
𝑑
+
(
− 𝑟

4
+

𝑓 ′(𝜉2)
4

−
3𝑓 ′(𝜉2)

4

)‖𝜙∗∗ − 𝜙∗‖2
𝑑

= −𝑀Δ𝑡
2

‖√𝐶∇𝑑𝜇
∗∗‖2𝑒 + 𝜖2

4
‖√𝐶∇𝑑 (𝜙∗∗ −𝜙∗)‖2𝑒

≤ −𝑀Δ𝑡
2

‖√𝐶∇𝑑𝜇
∗∗‖2𝑒 + 𝜖2

4
‖√𝐶∇𝑑 (𝜙∗∗ − 𝜙𝑛)‖2𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
III

+ 𝜖2

4
‖√𝐶∇𝑑 (𝜙∗ − 𝜙𝑛)‖2𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
IV

(56)

Here, the terms III and IV can be absorbed into term I and II, respectively. By multiplying Eq. (38) with 𝜇𝑛+1
𝑖𝑗

and taking the discrete 𝐿2-inner 
product, we have

(𝜙𝑛+1 −𝜙∗∗, 𝜇𝑛+1)𝑑 =Δ𝑡
(
∇𝑑 ⋅ (𝑀𝐶∇𝑑𝜇

𝑛+1), 𝜇𝑛+1)
𝑑
= −𝑀Δ𝑡‖√𝐶∇𝑑𝜇

𝑛+1‖2𝑒 . (57)

By multiplying Eq. (39) with 𝜙𝑛+1
𝑖𝑗

−𝜙∗∗
𝑖𝑗

and taking the discrete 𝐿2-inner product, we get

(𝜇𝑛+1, 𝜙𝑛+1 −𝜙∗∗)𝑑 = (𝑓 (𝜙∗∗), 𝜙𝑛+1 − 𝜙∗∗)𝑑 +
𝑟

2
(‖𝜙𝑛+1‖2

𝑑
− ‖𝜙∗∗‖2

𝑑
+ ‖𝜙𝑛+1 − 𝜙∗∗‖2

𝑑

)
+ 𝜖2

2

(‖√𝐶∇𝑑𝜙
𝑛+1‖2𝑒 − ‖√𝐶∇𝑑𝜙

∗∗‖2𝑒 + ‖√𝐶∇𝑑 (𝜙𝑛+1 − 𝜙∗∗)‖2𝑒) . (58)

By the Taylor expansion, we have

(𝑓 (𝜙∗∗), 𝜙𝑛+1 − 𝜙∗∗)𝑑 = (𝐹𝑎(𝜙𝑛+1) − 𝐹𝑎(𝜙∗∗),𝟏)𝑑 −
𝑓 ′(𝜉4)

2
‖𝜙𝑛+1 − 𝜙∗∗‖2

𝑑
. (59)

Thus, Eq. (58) are recast to be

(𝜇𝑛+1, 𝜙𝑛+1 −𝜙∗∗)𝑑 =𝐸(𝜙𝑛+1) −𝐸(𝜙∗∗) + 𝑟

2
‖𝜙𝑛+1 −𝜙∗∗‖2

𝑑
+ 𝜖2

2
‖√𝐶∇𝑑 (𝜙𝑛+1 − 𝜙∗∗)‖2𝑒

−
𝑓 ′(𝜉4)

2
‖𝜙𝑛+1 −𝜙∗∗‖2

𝑑
. (60)

By summing Eqs. (57) and (60) together, we have

𝐸(𝜙𝑛+1) −𝐸(𝜙∗∗) + 𝑟

2
‖𝜙𝑛+1 −𝜙∗∗‖2

𝑑
+ 𝜖2

2
‖√𝐶∇𝑑 (𝜙𝑛+1 −𝜙∗∗)‖2𝑒 − 𝑓 ′(𝜉4)

2
‖𝜙𝑛+1 − 𝜙∗∗‖2

𝑑

= −𝑀Δ𝑡‖√𝐶∇𝑑𝜇
𝑛+1‖2𝑒 . (61)

By combining Eqs. (56) and (61) and omit unnecessary terms, we obtain

𝐸(𝜙𝑛+1) − 5
2
𝐸(𝜙𝑛) + 3

2
𝐸(𝜙∗) +

(
𝑟

2
−

𝑓 ′(𝜉4)
2

)‖𝜙𝑛+1 − 𝜙∗∗‖2
𝑑

+
(
𝑟

2
−

𝑓 ′(𝜉1)
2

+
3𝑓 ′(𝜉3)

4

)‖𝜙𝑛 − 𝜙∗‖2
𝑑
− 𝑟

4
‖𝜙∗∗ − 𝜙∗‖2

𝑑
−

𝑓 ′(𝜉2)
2

‖𝜙∗∗ − 𝜙∗‖2
𝑑

≤ −𝑀Δ𝑡
2

‖√𝐶∇𝑑𝜇
∗∗‖2𝑒 −𝑀Δ𝑡‖√𝐶∇𝑑𝜇

𝑛+1‖2𝑒 (62)

By combining the term with same coefficients, we get

𝐸(𝜙𝑛+1) − 5
2
𝐸(𝜙𝑛) + 3

2
𝐸(𝜙∗) +

(
𝑟

2
−

𝑓 ′(𝜉4)
2

)‖𝜙𝑛+1 − 𝜙∗∗‖2
𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

+
(
− 𝑟

4
−

𝑓 ′(𝜉2)
2

)‖𝜙∗∗ − 𝜙∗‖2
𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I II
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Table 1

𝐿2-errors and convergence rates of the first-order time-accurate scheme.

Δ𝑡: 32𝛿𝑡 16𝛿𝑡 8𝛿𝑡 4𝛿𝑡 2𝛿𝑡

Error: 1.38e-4 6.84e-5 3.24e-5 1.39e-5 4.68e-6
Rate: 1.01 1.08 1.22 1.57

Table 2

𝐿2-errors and convergence rates of the second-order time-accurate scheme.

Δ𝑡: 32𝛿𝑡 16𝛿𝑡 8𝛿𝑡 4𝛿𝑡 2𝛿𝑡

Error: 2.56e-5 7.75e-6 2.14e-6 5.58e-7 1.51e-7
Rate: 1.72 1.85 1.94 1.89

+
(
𝑟

2
−

𝑓 ′(𝜉1)
2

+
3𝑓 ′(𝜉3)

4

)‖𝜙𝑛 − 𝜙∗‖2
𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
III

≤ −𝑀Δ𝑡
2

‖√𝐶∇𝑑𝜇
∗∗‖2𝑒 −𝑀Δ𝑡‖√𝐶∇𝑑𝜇

𝑛+1‖2𝑒 ≤ 0. (63)

To make term I be non-negative, we require 𝑟 ≥ max(𝑓 ′(𝜉4)) = 32 − 1 − 𝑟, i.e., 𝑟 ≥ (32 − 1)∕2. To make term II be non-negative, we have 
−𝑟∕4 ≥max(𝑓 ′(𝜉2))∕2 ≥ 0, i.e., 𝑟 > 62 − 2. To make term III be non-negative, we require 𝑟∕2 ≥ 𝑓 ′(𝜉1)∕2 − 3𝑓 ′(𝜉3)∕4, i.e., 𝑟 ≥ 62 + 1. With  = 1.2, 
we obtain 𝑟 ≥ 9.64. The inequality (63) implies the desired result. The proof is completed. □

Remark 2.1. In this section, we propose fully discrete schemes for solving the CH equation in arbitrarily complex domains. A simple and effective 
boundary control function is introduced to develop equivalent equations in complex domains. Because of the property of discrete boundary control 
function, the discrete summation by parts relation holds. By using IMEX RK approaches, we develop linear first- and second-order time-accurate 
schemes. The mass conservation and unconditionally energy stability can be rigorously proved. Furthermore, the proposed method can directly 
combine with the efficient multigrid algorithm [47]. Note that the discrete boundary control functions in fine and coarse grids are different and the 
discrete irregular domains satisfy Ω𝑑

in
∈ Ω𝐷

in
, where 𝑑 and 𝐷 denote the fine and coarse grids, respectively. Therefore, restriction and interpolation 

operators in multigrid algorithm should be defined in a weighted manner [45]. The present work aims to present an efficient numerical strategy to 
calculate phase-field model in irregular domains and validate the performance by extensive 2D and 3D simulations. In an upcoming work, we will 
further investigate the error estimation of the proposed schemes by following the similar idea in [48].

Remark 2.2. For the first-order time-accurate scheme, we obtain the energy law as 𝐸(𝜙𝑛+1) ≤ 𝐸(𝜙𝑛) ≤ ... ≤ 𝐸(𝜙0), where 𝐸(𝜙0) is an initial energy. 
Since 𝐸(𝜙𝑛+1) = (𝐹𝑎(𝜙𝑛+1), 𝟏)𝑑 +

𝑟

2‖𝜙𝑛+1‖2
𝑑
+ 𝜖2

2 ‖√𝐶∇𝑑𝜙
𝑛+1‖2𝑒 and 𝐹𝑎(𝜙𝑛+1) = (𝜙𝑛+1)4∕4 − (1 + 𝑟)(𝜙𝑛+1)2∕2 + 1∕4, we have

𝐸(𝜙0) ≥
([

(𝜙𝑛+1)2

2
− 1

2

]2
,𝟏
)

𝑑

≥ ℎ2

[
(𝜙𝑛+1

𝑖𝑗
)2

2
− 1

2

]2

for any 𝑖 and 𝑗 in 2D space. We then have the uniform boundedness of the numerical solution as ‖𝝓𝑛+1‖∞ ≤
√

1 + 2
√
𝐸(𝜙0)∕ℎ. The result in 3D space 

is straightforward. The uniform boundedness of the solution obtained by the temporally second-order accurate scheme will be left in a separate 
analytical work.

3. Numerical results

To validate the performance of the proposed schemes, the simulations of CH equation in various complex domains are performed in this section. 
Without specific needs, we set 𝑀 = 0.1, the full domains are set to be Ω = (0, 1) × (0, 1) and (0, 1) × (0, 1) × (0, 1) with respect to 2D and 3D cases, 
respectively. The homogeneous Neumann boundary condition is considered at 𝜕Ω. Based on the analysis in the previous section, we choose 𝑟 = 5
and 𝑟 = 10 for the temporally first-order and second-order accurate schemes, respectively.

3.1. Convergence in time and energy stability

In the previous section, we analytically proved the discrete versions of energy stability with respect to the temporally first- and second-order 
accurate methods. To confirm these, we first investigate the convergence rates in time to show the temporal accuracy. The circular computational 
domain with radius 𝑅 = 0.45 is considered. The initial condition inside Ωin is defined as 𝜙(𝑥, 𝑦, 0) = sin(8𝜋𝑥) cos(8𝜋𝑦). The mesh size ℎ = 1∕128 is 
fixed. We set 𝜖 = 0.0075. Because the exact solution of the CH equation in an irregular domain is difficult to find, the numerical reference solution is 
obtained by using a finer time step 𝛿𝑡 = 1.53e-7. The increasingly larger time steps: Δ𝑡 = 4𝛿𝑡, 8𝛿𝑡, 16𝛿𝑡, and 32𝛿𝑡 are used to perform the calculations. 
Let 𝜙𝑟

𝑖𝑗
and 𝜙Δ𝑡

𝑖𝑗
be reference solution calculated by 𝛿𝑡 and numerical solution calculated by Δ𝑡 at (𝑥𝑖, 𝑦𝑗 ). The error is defined to be 𝑒𝑖𝑗 = 𝜙Δ𝑡

𝑖𝑗
− 𝜙𝑟

𝑖𝑗
. 

Tables 1 and 2 list the 𝐿2-errors ‖𝑒Δ𝑡‖𝑑 and convergence rates log2
(‖𝑒Δ𝑡‖𝑑∕‖𝑒Δ𝑡∕2‖𝑑) at 𝑡 = 7.8e-5 with respect to the first-order time-accurate and 

second-order time-accurate schemes. We can observe that the proposed schemes achieve desired temporal accuracy.

Next, we investigate the evolutions of discrete energy by varying the time step. The initial condition and computational domain are kept 
unchanged. The numerical computations are performed using the first- and second-order time-accurate methods with mesh size ℎ = 1∕256. We set 
𝜖 = 0.0038. Figs. 4(a) and (b) plot the energy curves under Δ𝑡 = 0.25, 0.05, and 0.01 with respect to the temporally first-order and second-order 
methods, respectively. As we can observe, the energy curves are decreasing in time, which indicates that the discrete energy dissipation property is 
satisfied. In Fig. 4(c), the evolutions of average concentrations �̄� are displayed with respect to different time steps. The insets show the snapshots 
calculated by the temporally second-order accurate method. The results indicate that the mass is conserved.
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Fig. 4. Evolutions of energy curves with respect to temporally first-order and second-order schemes are plotted in (a) and (b), respectively. The temporal evolutions 
of average concentrations are shown in (c). The insets display the snapshots at different moments.

Table 3

𝐿2-errors and convergence rates. Here, the temporally 
first-order accurate scheme is used.

ℎ: 8ℎ𝑓 4ℎ𝑓 2ℎ𝑓

Error: 1.37e-3 3.57e-4 9.33e-5
Rate: 1.94 1.94

Table 4

𝐿2-errors and convergence rates. Here, the temporally 
second-order accurate scheme is used.

ℎ: 8ℎ𝑓 4ℎ𝑓 2ℎ𝑓

Error: 1.40e-3 3.64e-4 9.44e-5
Rate: 1.94 1.95

3.2. Accuracy in space

To achieve simple and efficient implementation, we develop finite difference scheme to treat the complex domains. The standard central differ-

ence stencil is adopted to discretize the spatial operators. To verify the accuracy in space, we fix the time step as Δ𝑡 = 4.17e-5. The value of 𝜖 is set 
to be 0.04. Ω = (0, 2) × (0, 2) is used. Inspired by [45], we consider a region Ωout locating whin [0.5, 1.5] × [0.5, 1.5]. The following initial condition 
[45] is defined in Ωin =Ω∕Ωout as follows:

𝜙(𝑥, 𝑦,0) = 0.8cos(2𝜋𝑥) − cos(2𝜋𝑦). (64)

A finer mesh size ℎ𝑓 = 1∕256 is used to obtain the reference solution 𝜙ℎ𝑓

𝑖𝑗
at each point (𝑥𝑖, 𝑦𝑗 ). The calculations are performed by using increasingly 

larger mesh sizes: ℎ = 2ℎ𝑓 , 4ℎ𝑓 and 8ℎ𝑓 until 𝑡 = 8.3e-4. The error is defined as

𝑒
ℎ𝑓 ∕ℎ
𝑖𝑗

= 𝜙ℎ
𝑖𝑗 − 0.25

(
𝜙ℎ𝑓

𝑝𝑖−𝑝∕2,𝑝𝑗−𝑝∕2 + 𝜙ℎ𝑓

𝑝𝑖−𝑝∕2,𝑝𝑗−𝑝∕2−1 +𝜙ℎ𝑓

𝑝𝑖−𝑝∕2−1,𝑝𝑗−𝑝∕2 + 𝜙ℎ𝑓

𝑝𝑖−𝑝∕2−1,𝑝𝑗−𝑝∕2−1

)
,

where 𝑝 = 2, 4, and 8, 𝜙ℎ
𝑖𝑗

is the numerical solution calculated by mesh size ℎ. The 𝐿2-errors and corresponding rates are defined to be ‖𝑒ℎ𝑓 ∕ℎ‖𝑑 and 
log2

(‖𝑒ℎ𝑓 ∕(2ℎ)‖𝑑∕‖𝑒ℎ𝑓 ∕ℎ‖𝑑), respectively. Tables 3 and 4 list the errors and convergence rates calculated by the temporally first-order and second-

order schemes. The results demonstrate that the proposed scheme achieves the second-order accuracy in space no matter what temporal scheme is 
used.
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Fig. 5. Snapshots of phase separation in different domains. In each subfigure, the left and right columns display the results in a circular domain and a full domain, 
respectively.

Fig. 6. Evolutions of energy curves (a) and average concentrations (b) in a circular domain and a full domain.

Fig. 7. From the left to right, the subfigures display a dumbbell-shaped domain, a horse-shaped domain, and a complex domain with T-junctions. The experiment of 
multiple droplets in T-junctions adapted from [49] with permission of APS is shown in the last subfigure.

3.3. Phase separation in circular and full domains

From the discussions in section 2, we know that the discrete boundary control function brings the effect of zero Neumann boundary condition 
in the neighborhood of irregular boundary. In the region away from the irregular boundary, the evolutional dynamics should not be affected by the 
boundary shape. To confirm this, we consider a comparison test in which the phase separation is simulated in a circular domain and a full domain, 
respectively. The initial condition is defined to be

𝜙(𝑥, 𝑦,0) = 0.01rand(𝑥, 𝑦), (65)

where rand(𝑥, 𝑦) is the number value between −1 and 1. The time step is Δ𝑡 = 0.01, the mesh size is ℎ = 1∕256, and 𝜖 = 0.0038. As shown in Fig. 5, 
the left and right columns display the results in the circular domain with radius 𝑅 = 0.45 and in the full domain. In each full domain, the light 
green circle is used to represent the area of circular region. In the neighborhood of the boundary of circular domain, we can observe the effect 
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Fig. 8. Spinodal decomposition in a dumbbell-shaped domain. The top and second rows display the snapshots with respect to �̄� = 0 and −0.4. The last row plots the 
evolutions of energy.

Fig. 9. Spinodal decomposition in a horse-shaped domain. The top and second rows display the snapshots with respect to �̄� = 0 and −0.4. The last row plots the 
evolutions of energy.

of homogeneous Neumann boundary condition, i.e., the patterns contact with the boundary in an approximately 90◦ angle. With time evolution, 
the same fluid materials merge with each other and gradually occupy most regions. This phase coarsening phenomenon is well simulated in both 
circular and full domains. In the region away from the irregular boundary (i.e., the central region of the computational domain), we observe that the 
dynamical behaviors in circular and full domains are almost consistent. In Figs. 6(a) and (b), the temporal evolutions of energy curves and average 
concentrations are plotted. The results denote that the energy dissipation and mass conservation properties are satisfied.
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Fig. 10. Spinodal decomposition in a complex domain with T-junctions. The top and second rows display the snapshots with respect to �̄�= 0 and −0.4. The last row 
plots the evolutions of energy.

3.4. Spinodal decomposition in two-dimensional irregular domains

The spinodal decomposition is a typical dynamics of CH equation. At initial stage, let us consider two homogeneously distributed fluid materials. 
With time evolution, the initially small perturbations will lead to the growth of amplitude of 𝜙. After the competition between phase separation and 
phase mixing, the diffuse interface will appear to distinguish two different materials. Subsequently, the same components merge with each other to 
form bigger patterns until the equilibrium state is arrived. Moreover, the evolution of this coarsening process is significantly affected by the average 
concentration, see previous simulations [6,16,45].

Now, we compute the spinodal decompositions with different average concentrations in various 2D irregular domains. First of all, we consider 
the dumbbell-shaped domain, horse-shaped domain, and a domain with T-junctions, see Fig. 7. Note that the T-junctions have been widely used in 
micro-fluid fields to achieve the accurate control of liquid conversion [49]. The real experiment of multiple droplets in T-junctions is illustrated in 
the right column of Fig. 7.

The following initial condition is set in all complex domains

𝜙(𝑥, 𝑦,0) = �̄�+ 0.01rand(𝑥, 𝑦), (66)

where �̄� is the average concentration. Here, we consider �̄� = 0 and −0.4. For all simulations, we use Δ𝑡 = 0.01, ℎ = 1∕256, and 𝜖 = 0.0038. From top 
to bottom, the top and middle rows of Fig. 8 show the snapshots of spinodal decomposition in a dumbbell-shaped domain with respect to �̄� = 0
and −0.4, respectively. When �̄� = 0, two components occupy approximately same proportion and the co-continuous patterns evolve in time. When 
�̄� = −0.4, the droplet patterns can be observed. The smaller droplets shrink and the bigger droplets grow to form coarser structures. In the nearby 
regions of irregular boundary, the components contact with the boundary in approximately 90◦ angles. The last row of Fig. 8 plots the energy curves 
with respect to different average concentrations. As we can see, the energy dissipation property is satisfied in a dumbbell-shaped domain.

From top to bottom, the top and second rows of Fig. 9 show the spinodal decompositions in a horse-shaped domain with respect to �̄� = 0 and 
−0.4. It can be observed that the co-continuous and droplet-shaped patterns appear because of different average concentrations. The energy curves 
plotted in the last row of Fig. 9 indicate that the energy dissipation property is satisfied in a horse-shaped domain. The corresponding results in a 
complex domain with T-junctions are displayed in Fig. 10. Although the basic dynamics of CH equation is similar with that in regular domains [6], 
it can be found that the geometries of irregular domains obviously lead to different distributions of phase patterns.

Next, we consider the phase separation in the irregular domains based on real images. At first, a hand-shaped domain adapted from [50] is used. 
The initial condition, time step, mesh size, and 𝜖 are unchanged. The average concentration �̄� = 0 is adopted. The evolutions are shown in the top 
row of Fig. 11. The next one is a human-shaped domain which is adapted from [51]. Here, the full domain is set to be Ω = (0, 0.5) × (0, 1). The mesh 
size is 128 × 256. The snapshots of phase separation in a human-shaped domain are shown in the second row of Fig. 11. We also plot the energy 
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Fig. 11. The top and second rows display the phase separation in a hand-shaped domain and a human-shaped domain. The hand and human images are adapted 
from [50] and [51]. The last row plots the evolutions of energy.

curves in the last row of Fig. 11. The results in this subsection show that the proposed scheme not only has good capability to simulate spinodal 
decompositions in various domains but also preserves the energy dissipation property.

3.5. Spinodal decomposition in three-dimensional irregular domains

To further confirm the capability of our proposed method, we investigate the spinodal decompositions in various complex domain in 3D space. 
The parameters are set to be Δ𝑡 = 0.01, ℎ = 1∕128, 𝜖 = 0.0075. The initial condition is 𝜙(𝑥, 𝑦, 𝑧, 0) = 0.01rand(𝑥, 𝑦, 𝑧). As a typical case, the spherical 
domain with radius 𝑅 = 0.45 is first considered. The top row of Fig. 12 displays the snapshots of phase separation in a spherical domain. Here, the 
dark blue iso-surface is used to represent the profile of irregular domain. The next simulation is for the spinodal decomposition in the Schoen G 
domain. The surface of Schoen G is represented by the following function [52]

𝜓(𝑥, 𝑦, 𝑧) = sin(2𝜋𝑥) cos(2𝜋𝑦) + sin(2𝜋𝑧) cos(2𝜋𝑥) + sin(2𝜋𝑦) cos(2𝜋𝑧). (67)

The evolutional results are shown in the top row of Fig. 13. The last simulation is performed in an alphabet “H” domain [53], its surface is defined 
as 𝜓(𝑥, 𝑦, 𝑧) =min(min(𝑑1, 𝑑2), 𝑑3). Here,

𝑑1 = min(max(𝑣1𝑥,max(𝑣1𝑦, 𝑣
1
𝑧)),0) +

√
(max(𝑣1𝑥,0))2 + (max(𝑣1𝑦,0))2 + (max(𝑣1𝑧,0))2,

𝑑2 = min(max(𝑣2𝑥,max(𝑣2𝑦, 𝑣
2
𝑧)),0) +

√
(max(𝑣2𝑥,0))2 + (max(𝑣2𝑦,0))2 + (max(𝑣2𝑧,0))2,

𝑑3 = min(max(𝑣3𝑥,max(𝑣3𝑦, 𝑣
3
𝑧)),0) +

√
(max(𝑣3𝑥,0))2 + (max(𝑣3𝑦,0))2 + (max(𝑣3𝑧,0))3,

where

𝑣1𝑥 = |𝑥− 0.5 − 2𝑠|− 𝑠, 𝑣1𝑦 = |𝑦− 0.5|− 4𝑠, 𝑣1𝑧 = |𝑧− 0.5|− 1.5𝑠,
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Fig. 12. Spinodal decomposition inside a sphere. The last row plots the energy curve.

Fig. 13. Spinodal decomposition inside a Schoen G. The last row plots the energy curve.

𝑣2𝑥 = |𝑥− 0.5 + 2𝑠|− 𝑠, 𝑣2𝑦 = |𝑦− 0.5|− 4𝑠, 𝑣2𝑧 = |𝑧− 0.5|− 1.5𝑠,

𝑣3𝑥 = |𝑥− 0.5|− 3𝑠, 𝑣3𝑦 = |𝑦− 0.5|− 𝑠, 𝑣3𝑧 = |𝑧− 0.5|− 1.5𝑠, for 𝑠 = 0.1.

The evolutional results are shown in the top row of Fig. 14. In the bottom rows of Figs. 12, 13, and 14, the energy curves corresponding to three 
different 3D domains are plotted. The present computational results demonstrate that the proposed algorithm not only works well in 3D irregular 
domains but also satisfies the energy dissipation law.

3.6. Phase separation with variable mobilities in complex domains

In previous simulations, we perform the simulations of spinodal decompositions with constant mobility. To show the effect of variable mobility on 
the evolutional dynamics, we first consider the phase separation in a wavy tube with complex shape [45]. The space-dependent mobility is defined 
as 𝑀(𝑥) = 0.001 + 0.1𝑥2∕16. The full domain is set to be Ω = (0, 4) × (0, 1). The computational region is bounded by 𝑢(𝑥) = 0.05

√
𝑥 sin(3𝜋𝑥) + 0.75 and 

𝑙(𝑥) = 0.01𝑥2 cos(2𝜋𝑥) − 0.04 sin(6𝜋𝑥) + 0.3. The randomly initial condition with average concentration �̄� = 0 is used. We set Δ𝑡 = 0.01, ℎ = 1∕128, and 
𝜖 = 0.0075. The left and right columns of Fig. 15 show the snapshots of phase separation with respect to a space-dependent mobility 𝑀(𝑥) and a 
constant mobility 𝑀 = 0.1, respectively. When a constant mobility is used, we observe that the evolutional speed at each spatial point is same. On 
the contrary, the space-dependent mobility obviously suppresses the dynamics along the left side of complex domain.
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Fig. 14. Spinodal decomposition inside an alphabet “H”. The last row plots the energy curve.

Fig. 15. Phase separation in a wavy tube with respect to a space-dependent mobility (left) and a constant mobility (right). From top to bottom, the results are at 
𝑡 = 0.4, 1, 3, and 5.

Fig. 16. Phase separation in a velociraptor-shaped domain. The top and bottom rows correspond to 𝑀(𝜙) = 0.1|1 −𝜙2| and 𝑀 = 0.1, respectively.

Although there have been numerous simulations on the CH equation with constant mobility, it should be noted that the CH model was original 
derived with a degenerate mobility. In this work, we consider a typical degenerate mobility as 𝑀(𝜙) = 0.1|1 −𝜙2|. This form significantly lowers the 
long-range diffusion across bulk phases. The average concentration �̄� = 0.3 is used. The top row of Fig. 16 displays the snapshots of phase separation 
in a velociraptor-shaped domain with respect to a degenerate mobility. The bottom row of Fig. 16 displays the computational results with respect 
to a constant mobility, i.e., 𝑀 = 0.1. It can be observed that the degenerate mobility lowers the shrinkage rate of those smaller droplets because the 
long-range diffusion in bulk regions is weakened.
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4. Conclusions

To accurately and efficiently simulate the two-phase spinodal decomposition in arbitrarily irregular domains, a SSP-IMEX RK approach was used 
to design the linear numerical schemes in time. The temporally first-order accuracy and second-order accuracy were achieved by using two-step and 
three-step strategies. The FDM was considered to discretize the space. An appropriate boundary control function was introduced to transform the 
original equations into equivalent forms in complex domains. Because of the property of boundary control functional, the discrete versions of mass 
conservation and unconditional energy dissipation law could be strictly proved. In each time iteration, the solution could be efficiently updated by 
solving several linear elliptic type equations and the conservative multigrid algorithm was also presented to accelerate the convergence. The energy 
dissipation property, mass conservation, and convergence rates with respect to time and space were confirmed by the numerical experiments. The 
simulations in 2D irregular domains (i.e., circle, dumbbell, micro-fluid device, horse, human, and hand) and 3D irregular domains (i.e., sphere, 
Schoen G, and alphabet H) showed that the proposed method had desired capability. In upcoming works, we will extend the present idea to develop 
efficient and energy-stable methods for the 𝐿2-gradient flows [54,55], the 𝑁 -component (𝑁 ≥ 3) phase-field models [9,56–59], the phase-field 
dendritic growth model [60], and the incompressible fluid flows coupled phase-field systems [61–63] in arbitrarily complex domains.
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Data will be made available on request.
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