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Binary fluid flows in irregular domains are common phenomena in natural and industrial 
fields. To describe these physical processes, we herein present a novel fluid flow-coupled 
two-material model reflecting different wetting conditions on an arbitrary fluid-solid 
interface. A modified ternary Cahn–Hilliard (CH) diffuse interface model is adopted to 
capture the fluid-fluid interface. One of three components is fixed for all time to represent 
the profile of complex domains. By considering the contact angle condition on solid-
fluid interface and equilibrium interface assumption, an extra wetting term is derived. 
To treat the fluid flow in domains with solid obstacles, we consider the entire system 
as a porous medium with variable permeability and add a large penalty term into the 
incompressible Navier–Stokes (NS) equations. It can be proven that the proposed modified 
Cahn–Hilliard–Navier–Stokes (CHNS) system satisfies the energy dissipation law (energy 
stability). Based on the scalar auxiliary variable (SAV) approach with appropriate correction 
techniques, the linear and consistent energy-stable scheme is developed. We introduce 
the numerical implementation and estimate the discrete version of energy stability in 
detail. The proposed method can be implemented on regular Cartesian grids with the 
absence of explicit boundary treatment. Moreover, the calculations are totally decoupled in 
each time step. Extensive numerical experiments not only indicate the expected accuracy 
and stability but also show the superior performance in arbitrary domains with different 
wetting conditions.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In industrial or natural field, most domains of binary fluid flows are irregular. For example, the formation of liquid jet 
in a flow focusing instrument [1,2], the vesicle in blood vessel or micro-fluid device [3,4], flows in porous medium [5], and 
tissue growth in culture dish [6], etc. In these irregular domains, the binary fluid flows generally undergo complex change 
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of interface, such as breakage, coalescence, and deformation. To efficiently and practically capture the topological changes 
of two-material interfaces, the diffuse interface (phase-field) method is a popular approach in which one or several order 
parameters (phase functions) are used to represent the volume fractions of different fluid components. The interface can be 
implicitly obtained by solving the governing equations of the order parameters, see [7–10] for the successful applications of 
the diffuse interface method in multi-component fluid simulations.

In the diffuse interface method, the Cahn–Hilliard (CH) equation [11] is commonly used to capture the fluid interface 
because of its natural property of mass conservation. Furthermore, the CH equation is thermodynamically consistent, i.e., 
the free energy of system satisfies a dissipation law when appropriate boundary conditions (periodic or homogeneous-
Neumann) are considered. On the numerical level, the energy dissipation-preserving computation not only maintains the 
consistency with physical property but also prevents some unwanted numerical oscillations. Therefore, many researchers 
have developed and investigated energy-stable numerical methods for the CH equation, such as the nonlinear convex 
splitting scheme [12,13], stabilization-type method [14,15], auxiliary variable-type method [16–18], and exponential time 
differencing method [19], etc. However, most of these works focus on the problems either in regular domain or without 
wetting condition.

For the binary fluid flows in an arbitrary domain, the wetting condition should be considered because the fluid phase can 
contact with solid. To model this problem, Luo et al. [20] applied the finite element method (FEM) to directly discretize the 
computational domains with complex shapes and imposed appropriate wetting condition on each boundary point. Compared 
with the direct FEM on treating complex domain, the embedded domain-type method is more efficient. The basic idea of 
this method is to represent the profile of solid region with a specific level set of phase function which is defined inside a 
larger regular domain. On the boundary of regular domain, we still use simple boundary treatment, such as the periodic 
or zero Neumann boundary condition. The wetting condition on fluid-solid boundary is implicitly satisfied by solving the 
governing equations. Li et al. [21] presented a CH-type model by recasting the classical ternary system and added a wetting 
term based on the geometrical assumption. Their proposed model was solved by a first-order linear splitting method and 
adaptive mesh refinement. Similar ideas of embedded domain can also be found in [22] for quasi-incompressible binary 
flows in contact with solid obstacles. In a recent work of Yang et al. [23], a temporally second-order accurate and energy-
stable linear method was proposed for treating the modified CH model in arbitrary domains. It is worth noting that the 
modified model [21,23] is based on the following ternary CH system [24,25]

∂φi

∂t
= 1

Pe
�μi, (1.1)

μi = F ′(φi) + β(φ) − ε2�φi, i = 0,1,2, (1.2)

where φi is the order parameter of i-th component, μi is the chemical potential, Pe is the Peclect number related to 
mobility, ε is a parameter. The nonlinear term is F ′(φi) = φ3

i − φi . The Lagrange multiplier β(φ) is used to satisfy the link 
condition, i.e., φ0 + φ1 + φ2 = 1 [24,25]. For successful numerical methods and applications of the ternary CH model, see 
[26–29] and references therein.

The present study aims to develop a novel diffuse interface-type model for incompressible binary fluid flows with wetting 
condition in arbitrary domains. Based on the modified version of the ternary CH model, geometrical contact angle relation, 
and equilibrium interface assumption, the governing equations are derived to capture the binary fluid interface. The wetting 
condition on fluid-solid boundary is implicitly achieved by solving the equations without explicit boundary treatment. To 
describe the fluid flows in the domain with solid wall or obstacles, a penalty term is introduced into the incompressible 
Navier–Stokes (NS) equations. After each computation, the velocity evolution inside the solid phase is effectively suppressed. 
The whole system can be easily implemented on Cartesian grids. Moreover, the energy dissipation law of the proposed 
model can be analytically estimated. Based on an auxiliary variable-type method with correction techniques, the linear, 
temporally second-order, and unconditionally energy-stable method is developed. The proposed scheme can be implemented 
in a totally decoupled manner and still satisfies the time-discretized energy dissipation law. To the best of our knowledge, 
this is the first study focusing on a Cartesian grid based diffuse interface fluid model with wetting condition in complex 
domains and its consistent energy-stable computation. Theoretically, any discretization methods in space can be directly 
used on this model.

The rest parts are organized as follows. In Section 2, we present the governing equations for describing binary flows in 
complex domains. In Section 3, the linear energy-stable method and the detailed implementation are introduced. Extensive 
computational tests are shown in Section 4. The conclusions are drawn in Section 5.

2. Proposed model in arbitrary domain

In present work, we fix one component (i.e., φ0) in the ternary CH model for all time and use its 0.5 level set to represent 
the profile of solid domain. We let φ0 = 1 and 0 in the interior and exterior of solid, respectively. In the exterior of solid, 
the region is occupied by fluid phases, i.e., φ1 and φ2. From the link condition, i.e., φ0 +φ1 +φ2 = 1, we know that the fluid 
and solid can not penetrate into the bulk phase of each other.

When we consider the binary fluid system in contact with solid, the wetting condition should be reflected because the 
real solid surface generally has hydrophobic or hydrophilic property. From the perspective of physics, the wetting condition 
2
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Fig. 1. Schematic illustration of a droplet in contact with solid. Here, θ is the contact angle. The surface tensions are σ12, σ1S , and σ2S .

can be approximately described by the dihedral contact angle among fluid and solid phases. Moreover, the Young’s equality 
[21] gives the relation between surface tensions and contact angle, i.e.,

σ12 cos θ = σ2S − σ1S , (2.1)

where θ is the contact angle, σ12, σ1S , and σ2S are the surface tensions on the interfaces between fluid 1 and fluid 2, fluid 
1 and solid, fluid 2 and solid. A schematic illustration of single droplet in contact with solid substrate is shown in Fig. 1.

Based on the local equilibrium interface assumption [24], the relation |∇φi | = φi(1 −φi)/(
√

2ε) holds. Because φ0 is used 
to represent the solid and φi is the fluid, we have the following boundary condition on fluid-solid boundary

∇φi · nS = −|∇φi | cos θi = −φi(1 − φi) cos θi/(
√

2ε), (2.2)

where θi = 180◦ − θ and nS = ∇φ0/|∇φ0| is the unit normal vector to fluid-solid boundary. Now, we recast Eq. (2.2) to be

ε2∇φ0 · ∇φi + εφi(1 − φi)|∇φ0| cos θi/
√

2 = 0. (2.3)

By adding the above “zero-contribution” equality into the original chemical potential, we have

μi = F ′(φi) + β(φi) + εφi(1 − φi)|∇φ0| cos θi/
√

2 − ε2∇ · ((1 − φ0)∇φi) − ε2φ0�φi . (2.4)

Here, �φi = ∇ · ((1 − φ0)∇φi) + ∇φ0 · ∇φi + φ0�φi is used. It is worth noting that the above equation and original chemical 
potential are equivalent in fluid region because φ0 = 0. On the fluid-solid boundary, the last term in Eq. (2.4) becomes zero 
as φ0 → 0. Moreover, we notice that the last term does not contain the contact angle. By imposing strict restriction on the 
evolution in solid and ignoring the effect of last term in Eq. (2.4) on fluid-solid boundary, we derive the following modified 
model in an arbitrary domain

∂φi

∂t
= 1

Pe
∇ · ((1 − φ0)∇μi) , (2.5)

μi = F ′(φi) + β(φ) + ε√
2
φi(1 − φi)|∇φ0| cos θi − ε2∇ · ((1 − φ0)∇φi), i = 1,2. (2.6)

Here, we note θ2 = 180◦ − θ1. Based on the above model, the arbitrary solid region is actually embedded into a larger 
regular domain 	. On the regular domain boundary ∂	, the periodic or the homogeneous-Neumann boundary condition 
(i.e., ∇φi · n|∂	 = 0 and ∇μi · n|∂	 = 0, i = 0, 1, 2) is considered. Inspired by [24–26], the similar form of β(φ) is defined as

β(φ) = −1

3

[
2∑

i=1

(
F ′(φi) + εφi(1 − φi)|∇φ0| cos θi/

√
2
)

+ F ′(φ0)

]
.

For the solid phase, the contact angle is absent and we only consider the effect of F ′(φ0) in above equality. Equations (2.5)
and (2.6) can be used to capture the fluid-fluid interface in an arbitrary domain and the interface is represented by the 
0.5 level set of φi . To model the hydrodynamics coupled binary materials in the domain with fixed solid wall or obstacles, 
a basic fact is to suppress the velocity field in solid phase. In our work, we aim to propose a Cartesian grid-based model 
satisfying the energy dissipation law. Based on the penalty idea in Bergmann et al. [30], the dimensionless incompressible 
NS equations with constant density and viscosity are written to be

∂u

∂t
+ u · ∇u = −∇p + 1

Re
�u − 1

W e

2∑
i=1

φi∇μi + φ0

κ
(uS − u), (2.7)

∇ · u = 0, (2.8)

where u = (u, v) or u = (u, v, w) is the velocity field. The velocity of solid is uS . The pressure is p and the third term on 
the right-hand side reflects the effect of surface tension. The dimensionless numbers are Reynolds number Re and Weber 
number W e, see [24–27] for detailed definitions. The last term on the right-hand side is the penalty term which suppresses 
the velocity field in solid. The permeability κ is a constant and 0 < κ � 1. Because we assume the solid phase is fixed, uS

is zero in this work and we have the following particular equations
3
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∂u

∂t
+ u · ∇u = −∇p + 1

Re
�u − 1

W e

2∑
i=1

φi∇μi − φ0

κ
u, (2.9)

∇ · u = 0. (2.10)

By adding the convection effect into the phase-field model, the modified CHNS system for binary incompressible flows in 
an arbitrary domain is postulated as

∂φi

∂t
+ ∇ · (uφi) = 1

Pe
∇ · ((1 − φ0)∇μi) , (2.11)

μi = F ′(φi) + β(φ) + εφi(1 − φi)|∇φ0| cos θi/
√

2 − ε2∇ · ((1 − φ0)∇φi), i = 1,2, (2.12)

∂u

∂t
+ u · ∇u = −∇p + 1

Re
�u − 1

W e

2∑
i=1

φi∇μi − φ0

κ
u, (2.13)

∇ · u = 0. (2.14)

On the domain boundaries, the periodic boundary condition or u = 0 is used for velocity field. Before the start of the 
following contents, we define some useful notations. Let fa and fb be two integrable functions, the L2-inner product is 
defined as ( fa, fb) =

∫
	

fa · fb dx, the L2-norm is defined as ‖ fa‖2 = ( fa, fa). By multiplying 1 on Eq. (2.11) and utilizing the 
divergence theorem and appropriate boundary condition, it is easy to check that φi is mass-conserved, i.e., d

dt

∫
	

φi dx = 0. 
Furthermore, the proposed system, i.e., Eqs. (2.11)–(2.14), satisfy the following theorem.

Theorem 2.1. The solutions of Eqs. (2.11)–(2.14) dissipate a total energy functional as follows

Eo =
∫
	

2∑
i=1

[
ε2

2
(1 − φ0)|∇φi |2 + F (φi) + ε

(
φ2

i

2
− φ3

i

3

)
|∇φ0| cos θi

]
dx +

∫
	

W e

2
|u|2 dx. (2.15)

Proof. By multiplying Eq. (2.11) with μi and taking the L2-inner product, we get(
∂φi

∂t
,μi

)
+ (∇ · (uφi),μi) = − 1

Pe
‖√1 − φ0∇μi‖2, (2.16)

where the integral by parts and appropriate boundary condition (periodic or homogeneous-Neumann type) are used. By 
multiplying Eq. (2.12) with ∂φi/∂t and taking the L2-inner product, we have

(
μi,

∂φi

∂t

)
= d

dt

∫
	

F (φi) dx +
(

β(φ),
∂φi

∂t

)
+ d

dt

∫
	

ε

(
φ2

i

2
− φ3

i

3

)
|∇φ0| cos θi dx

+ d

dt

∫
	

ε2

2
(1 − φ0)|∇φi|2 dx. (2.17)

By taking the L2-inner product of Eq. (2.13) with W eu, we have

d

dt

∫
	

W e

2
|u|2 dx = − W e

Re
‖∇u‖2 − W e

κ
‖√φ0u‖2 + (φ1∇μ1 + φ2∇μ2,u) , (2.18)

where (u · ∇u, u) = 0 and (−∇p, u) = 0 [31,32] are used. By combining Eq. (2.18) with Eqs. (2.16)–(2.17) from i = 1 to 2, 
we obtain

d

dt
Eo = − W e

Re
‖∇u‖2 − W e

κ
‖√φ0u‖2 − 1

Pe

2∑
i=1

‖√1 − φ0∇μi‖2 ≤ 0, (2.19)

where 
(
β(φ),

∂(φ1+φ2)
∂t

)
=

(
β(φ),

∂(1−φ0)
∂t

)
= 0 is used because φ0 is constant with respect to time t . The above inequality 

completes the proof. �
Theorem 2.2. The proposed model satisfies the mass conservation of φi .
4
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Proof. By taking the integral on both sides of Eq. (2.11), we have∫
	

∂φi

∂t
dx = d

dt

∫
	

φi dx = −
∫
	

∇ · (uφi) dx + 1

Pe

∫
	

∇ · ((1 − φ0)∇μi) dx

= 1

Pe

∫
∂	

(1 − φ0)∇μi · n ds = 0, (2.20)

where the divergence theorem, u|∂	 = 0, and ∇μi · n|∂	 = 0 are used. The aforementioned result indicates that 
∫
	

φi dx is 
conserved. The proof is completed. �
3. Computational solution algorithm

Now, we first derive the equivalent equations by introducing time-dependent auxiliary variables. The equivalent form is 
essential to develop linearly decoupled, second-order time-accurate, and energy-stable method. Later, we describe the time-
marching method based on second-order backward difference formula (BDF2) and present its energy stability and totally 
decoupled implementation.

3.1. Equivalent equations

The SAV method was originally presented by Shen et al. [33] to construct linear energy-stable schemes for the gradient 
flows. Because the difficulty of energy estimation mainly comes from the nonlinear terms, the basic idea of SAV method is 
to introduce a time-dependent auxiliary variable which is related to the nonlinear terms. By performing the time derivative 
to the auxiliary variable, an extra evolutional equation can be obtained to complete the system. In this context, the energy 
stability can be easily proved since the inner products of nonlinear terms and the right-hand side of extra evolutional 
equation balance themselves out. Based on the similar idea, Lin et al. [34] developed a SAV-type numerical approximation for 
the incompressible NS equations. With u|∂	 = 0 and divergence-free condition, we have (u · ∇u, u) = 0 and (∇ · (uφi), μi) +
(φi∇μi, u) = 0. Because there terms are “zero-energy-contribution”, we can introduce an auxiliary variable ≡ 1, then its 
time derivative equals to zero. Based on the similar treatment of SAV method, the difficulty resulting from nonlinear and 
coupled terms can be eliminated in energy estimation. Please refer to [35,36] for some successful applications. To construct 
equivalent equations, we define r(t) and q(t):

r = r(t) =
√√√√√∫

	

2∑
i=1

[
F (φi) + ε

(
φ2

i

2
− φ3

i

3

)
|∇φ0| cos θi/

√
2

]
dx + B, (3.1)

q = q(t) = 1,
dq

dt
= 0, (3.2)

where B is a large enough constant to ensure the positivity. Equations (2.11)–(2.14) are recast to be the following equivalent 
forms

∂φi

∂t
+ q∇ · (uφi) = 1

Pe
∇ · ((1 − φ0)∇μi) , (3.3)

μi = r
(

Hi + β̃(φ)
)

− ε2∇ · ((1 − φ0)∇φi) , (3.4)

∂u

∂t
+ qu · ∇u = −∇p + 1

Re
�u − q

W e

2∑
i=1

φi∇μi − φ0

κ
u, (3.5)

∇ · u = 0, (3.6)

dr

dt
= 1

2

∫
	

2∑
i=1

Hi
∂φi

∂t
dx, (3.7)

dq

dt
=

∫
	

(
2∑

i=1

[∇ · (uφi)μi + φi∇μi · u] + W eu · ∇u · u

)
dx. (3.8)

Here,
5
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Hi = F ′(φi) + εφi(1 − φi)|∇φ0| cos θi/
√

2√∫
	

2∑
i=1

[
F (φi) + ε

(
φ2

i
2 − φ3

i
3

)
|∇φ0| cos θi/

√
2

]
dx + B

,

β̃(φ) = −1

3

⎡
⎢⎢⎢⎢⎣

2∑
i=1

Hi + F ′(φ0)√∫
	

2∑
i=1

[
F (φi) + ε

(
φ2

i
2 − φ3

i
3

)
|∇φ0| cos θi/

√
2

]
dx + B

⎤
⎥⎥⎥⎥⎦ .

The same boundary conditions in previous section are used. Because we introduce two extra variables: r and q, Eqs. (3.7)
and (3.8) provide two evolutional equations of r and q to complete the calculations. Following the estimations in [32], it 
is simple to check the right-hand side of Eq. (3.8) is zero. Thus, Eq. (3.8) satisfies the definition of dq/dt in Eq. (3.2). From 
the definitions of r and q, it can be observed that Eqs. (3.3)–(3.6) and Eqs. (2.11)–(2.12) are indeed equivalent. By using the 
similar estimations in previous section, the energy dissipation law holds with respect to the following equivalent energy

Ee
o = |r|2 +

∫
	

2∑
i=1

(
ε2

2
(1 − φ0)|∇φi |2

)
dx +

∫
	

W e

2
|u|2 dx − B. (3.9)

Remark 3.1. To estimate an appropriate value of B , we only need to consider 
[
ε

(
φ2

i
2 − φ3

i
3

)
|∇φ0| cos θi/

√
2

]
because F (φi)

is non-negative. From [37], we define ε as ε = εl = lh/(4
√

2 tanh−1(0.9)) which indicates the diffuse interface approximately 
occupies l spatial grids. The spatial step is h and it will be defined in subsection 3.4. If we consider a central difference 
stencil to approximate |∇φ0| in space, a 1D example is |∇φ0| = |(φ0(xm+1) − φ0(xm−1))/(2h)|. Then, we have

ε

(
φ2

i

2
− φ3

i

3

)
|∇φ0| cos θi/

√
2 ≈ lh

8 tanh−1(0.9)

(
φ2

i

2
− φ3

i

3

)
|φ0(xm+1) − φ0(xm−1)

2h
| cos θi .

Although the CH dynamics will causes the numerical value of φi slightly overflows [0, 1], the value of 
(

φ2
i

2 − φ3
i

3

)
is non-

negative even if φi ∈ [−0.5, 1.5]. In this context, we have

0 ≤
(

φ2
i

2
− φ3

i

3

)
≤ 0.1667 for φi ∈ [−0.5,1.5].

As cos θi = 1, 
∫
	

2∑
i=1

[
ε

(
φ2

i
2 − φ3

i
3

)
|∇φ0| cos θi/

√
2

]
dx will be non-negative. As cos θi = −1, we get

ε

(
φ2

i

2
− φ3

i

3

)
|∇φ0| cos θi/

√
2 ≥ − 0.1667l

16 tanh−1(0.9)
,

where |(φ0(xm+1) − φ0(xm−1))/(2h)| ≤ 1/(2h) is used. Then, we get

∫
	

2∑
i=1

[
ε

(
φ2

i

2
− φ3

i

3

)
|∇φ0| cos θi/

√
2

]
dx ≥ − 0.1667l

8 tanh−1(0.9)
|	|,

where |	| is the area of computational domain. We can approximately set B > 0.1667l
8 tanh−1(0.9)

|	|. In actual simulation, B can 
take a small enough value because φi is almost bounded by 0 and 1.

3.2. Temporally second-order accurate scheme

Let T be the computational time and N T be the number of time iteration, the uniform time step is defined as �t = T /N T . 
For each variable, we define (·)n as the numerical approximation at n-th time level. Based on BDF2, the proposed scheme 
contains three steps in each time step.
Step 1. With computed variables at previous time levels, we update φn+1, un+1, and pn+1 by
i

6
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3φn+1
i − 4φn

i + φn−1
i

2�t
+ q̂n+1∇ · (u∗φ∗

i ) = 1

Pe
∇ · ((1 − φ0)∇μn+1

i ), (3.10)

μn+1
i = r̂n+1 (H∗

i + β(φ∗)
)− ε2∇ ·

(
(1 − φ0)∇φn+1

i

)
+ S(φn+1

i − φ∗
i ), i = 1,2, (3.11)

3ũn+1 − 4un + un−1

2�t
+ q̂n+1u∗ · ∇u∗ = −∇pn + 1

Re
�ũn+1 − q̂n+1

W e

2∑
i=1

φ∗
i ∇μ∗

i − φ0

κ
ũn+1, (3.12)

3un+1 − 3ũn+1

2�t
= − (∇pn+1 − ∇pn) , (3.13)

∇ · un+1 = 0, (3.14)

3r̂n+1 − 4rn + rn−1 = 1

2

∫
	

2∑
i=1

H∗
i (3φn+1

i − 4φn
i + φn−1

i ) dx, (3.15)

3q̂n+1 − 4qn + qn−1

2�t
=

∫
	

(
2∑

i=1

[
∇ · (u∗φ∗

i )μn+1
i + φ∗

i ∇μ∗
i · ũn+1

]
+ W eu∗ · ∇u∗ · ũn+1

)
dx, (3.16)

where (·)∗ = 2(·)n − (·)n−1 and S > 0 is a stabilization constant. On the boundaries of regular domain 	, the periodic or the 
following boundary conditions are used

un+1 · n|∂	 = 0, ũn+1|∂	 = 0, ∇φn+1
i · n|∂	 = ∇μn+1

i · n|∂	 = 0, ∇pn+1 · n|∂	 = ∇pn · n|∂	 = 0.

In above equations, the calculated r̂n+1 and q̂n+1 are not equal to their definitions in general. When a larger time step 
is used, these differences will become more obvious and then the consistency between numerical method and equivalent 
equations is lost. To improve the consistency for r, Jiang et al. [38] recently developed a simple and practical correction 
algorithm after each computation. To facilitate the interested readers, we still describe this correction technique in Step 2. 
Moreover, we also develop a new correction technique for q in Step 3 to further improve the consistency.
Step 2. With computed r̂n+1 and φn+1

i , we obtain rn+1 with the following correction

rn+1 = ξor̂n+1 + (1 − ξo) J (φn+1
i ), (3.17)

where

J (φi) =
√√√√√∫

	

2∑
i=1

[
F (φi) + ε

(
φ2

i

2
− φ3

i

3

)
|∇φ0| cos θi/

√
2

]
dx + B.

Here, ξo = min
ξ∈[0,1] ξ such that

1

2
(|rn+1|2 + |2rn+1 − rn|2) − 1

2
(|r̂n+1|2 + |2r̂n+1 − rn|2) ≤ �tη1

2∑
i=1

‖√1 − φ0∇μn+1
i ‖2, (3.18)

where 0 < η1 ≤ 1
Pe . Actually, the above inequality can be simplified as

aξ2 + bξ + c ≤ 0, (3.19)

where

a = 5

2

(
r̂n+1 − J (φn+1

i )
)2

, b =
(

r̂n+1 − J (φn+1
i )

)(
5 J (φn+1

i ) − 2rn
)

,

c = 1

2

(
| J (φn+1

i )|2 + |2 J (φn+1
i ) − rn|2 − |r̂n+1|2 − |2r̂n+1 − rn|2

)
− �tη1

2∑
i=1

‖√1 − φ0∇μn+1
i ‖2.

It is worth noting that a + b + c ≤ 0. With a �= 0, we have

ξo = max{0,
(
−b −

√
b2 − 4ac

)
/(2a)}. (3.20)

If a = 0, then the correction is not necessary. Some details of this correction technique can be found in [38].
Step 3. With computed q̂n+1 and ũn+1, we obtain qn+1 with the following correction
7
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qn+1 = χoq̂n+1 + (1 − χo). (3.21)

Here, χo = min
χ∈[0,1]χ such that

1

2

(
|qn+1|2 + |2qn+1 − qn|2

)
− 1

2

(
|q̂n+1|2 + |2q̂n+1 − qn|2

)
≤ �tη2

(
‖∇ũn+1‖2 + ‖√φ0ũn+1‖2

)
, (3.22)

where 0 < η2 ≤ min{ 2W e
Re , 2W e

κ }. The above inequality can be simplified as

dχ2 + eχ + f ≤ 0, (3.23)

where

d = 5
(
q̂n+1 − 1

)2
, e = 4(qn − 1)(1 − q̂n+1),

f = 5 − |qn|2 − 4qn − �tη2

(
‖∇ũn+1‖2 + ‖√φ0ũn+1‖2

)
.

We notice that d + e + f ≤ 0. With d �= 0, we have

χo = max{0,

(
−e −

√
e2 − 4df

)
/(2d)}. (3.24)

When d = 0, the correction is not necessary. After the corrections in Step 2 and Step 3, the updated values: rn+1 and qn+1

are more consistent with their definitions. In each time step, we perform Steps 1-3 in a step-by-step manner to obtain the 
solutions.

Theorem 3.1. The solutions in Steps 1-3 dissipate the following time-discretized corrected energy functional

En
c = 1

2

(
|rn+1|2 + |2rn+1 − rn|2

)
+ ε2

4

2∑
i=1

(
‖√1 − φ0∇φn+1

i ‖2 + ‖√1 − φ0(2∇φn+1
i − ∇φn

i ‖2)‖2
)

+ S

2

2∑
i=1

‖φn+1
i − φn

i ‖2 + W e

4

(
‖un+1‖2 + ‖2un+1 − un‖2

)
+ 1

4
(|qn+1|2 + |2qn+1 − qn|2)

+ W e�t2

3
‖∇pn+1‖2 − 1

2
. (3.25)

Proof. By taking the L2-inner product of Eq. (3.10) with �tμn+1
i , we get(

3φn+1
i − 4φn

i + φn−1
i ,μn+1

i

)
+ 2�tq̂n+1

(
∇ · (u∗φ∗

i ),μn+1
i

)
= −2�t

Pe
‖√1 − φ0∇μn+1

i ‖2. (3.26)

By taking the L2-inner product of Eq. (3.11) with 3φn+1
i − 4φn

i + φn−1
i , we have(

μn+1
i ,3φn+1

i − 4φn
i + φn−1

i

)
=

(
r̂n+1 H∗

i ,3φn+1
i − 4φn

i + φn−1
i

)
+

(
r̂n+1β(φ),3φn+1

i − 4φn
i + φn−1

i

)
+ε2

2

(
‖√1 − φ0∇φn+1

i ‖2 + ‖√1 − φ0(2∇φn+1
i − ∇φn

i )‖2
)

−ε2

2

(
‖√1 − φ0∇φn

i ‖2 + ‖√1 − φ0(2∇φn
i − ∇φn−1

i )‖2
)

+ε2

2
‖√1 − φ0(∇φn+1

i − 2∇φn
i + ∇φn−1

i )‖2 + S‖φn+1
i − φn

i ‖2

−S‖φn
i − φn−1

i ‖2 + 2S‖φn+1
i − 2φn

i + φn−1
i ‖2. (3.27)

By multiplying Eq. (3.15) with 2r̂n+1, we have(
|r̂n+1|2 + |2r̂n+1 − rn|2

)
−

(
|r̂n|2 + |2r̂n − rn−1|2

)
+ |r̂n+1 − 2rn + rn−1|2

=
(

r̂n+1
2∑

i=1

H∗
i ,3φn+1

i − 4φn
i + φn−1

i

)
. (3.28)

By combining Eqs. (3.26)–(3.28), we obtain
8
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1

2

(
|r̂n+1|2 + |2r̂n+1 − rn|2

)
− 1

2

(
|r̂n|2 + |2r̂n − rn−1|2

)
+ε2

4

(
‖√1 − φ0∇φn+1

i ‖2 + ‖√1 − φ0(2∇φn+1
i − ∇φn

i )‖2
)

−ε2

4

(
‖√1 − φ0∇φn

i ‖2 + ‖√1 − φ0(2∇φn
i − ∇φn−1

i )‖2
)

+ S

2
‖φn+1

i − φn
i ‖2 − S

2
‖φn

i − φn−1
i ‖2

+�tq̂n+1
(
∇ · (u∗φ∗

i ),μn+1
i

)
= −�t

Pe
‖√1 − φ0∇μn+1

i ‖2 − ε2

4
‖√1 − φ0(∇φn+1

i − 2∇φn
i + ∇φn−1

i )‖2

−S‖φn+1
i − 2φn

i + φn−1
i ‖2 − 1

4
|r̂n+1 − 2rn + rn−1|2 −

(
r̂n+1 H∗

i ,3φn+1
i − 4φn

i + φn−1
i

)

+
(

r̂n+1
2∑

i=1

H∗
i ,3φn+1

i − 4φn
i + φn−1

i

)
. (3.29)

By taking the L2-inner product of Eq. (3.12) with W e�tũn+1, we get

W e

2

(
3ũn+1 − 4un + un−1, ũn+1)︸ ︷︷ ︸

I

+W e�tq̂n+1 (u∗ · ∇u∗, ũn+1) = −W e�t
(∇pn, ũn+1)

− W e�t

Re
‖∇ũn+1‖2 − q̂n+1�t

(
2∑

i=1

φ∗
i ∇μ∗

i , ũn+1

)
− W e�t

κ
‖√φ0ũn+1‖2, (3.30)

where the term I can be estimated as follows(
3ũn+1 − 4un + un−1, ũn+1)

= (
3ũn+1 − 4un + un−1,un+1)+ (

3ũn+1 − 4un + un−1, ũn+1 − un+1)
= (

3un+1 − 4un + un−1,un+1)+ (
3ũn+1, ũn+1 − un+1)

= (
3un+1 − 4un + un−1,un+1)+ 3

(
ũn+1 − un+1, ũn+1 + un+1)

= 1

2

(
‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2

)
+3

(
‖ũn+1‖2 − ‖un+1‖2

)
.

From Eq. (3.13), we have

3un+1

2�t
+ ∇pn+1 = 3ũn+1

2�t
+ ∇pn. (3.31)

By squaring the above equality and taking the integral, we have

�t
(∇pn, ũn+1) = 3

4
‖un+1‖2 − 3

4
‖ũn+1‖2 + �t2

3

(
‖∇pn+1‖2 − ‖∇pn‖2

)
. (3.32)

By combining Eqs. (3.30) and (3.32), we get

W e

2

(
‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2

)

+3W e

2
‖ũn+1‖2 − 3W e

2
‖un+1‖2 + 2W e�tq̂n+1 (u∗ · ∇u∗, ũn+1)+ 2�tq̂n+1

(
2∑

i=1

φ∗
i ∇μ∗

i , ũn+1

)

= −2W e�t

Re
‖∇ũn+1‖2 − 2W e�t2

3

(
‖∇pn+1‖2 − ‖∇pn‖2

)
− 2W e�t

κ
‖√φ0ũn+1‖2. (3.33)

By taking the L2-inner product of Eq. (3.31) with 2�tun+1, we have

3

2
‖ũn+1‖2 − 3

2
‖un+1‖2 = 3

2
‖un+1 − ũn+1‖2. (3.34)

By multiplying Eq. (3.16) with q̂n+1, we have
9
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1

2

(
|q̂n+1|2 − |qn|2 + |2q̂n+1 − qn|2 − |2qn − qn−1|2

)
+ 1

2
|q̂n+1 − 2qn + qn−1|2

= 2W e�tq̂n+1 (u∗ · ∇u∗, ũn+1)+ 2�tq̂n+1
2∑

i=1

(
∇ · (u∗φ∗

i ),μn+1
i

)
+ 2�tq̂n+1

2∑
i=1

(
φ∗

i ∇μ∗
i , ũn+1) . (3.35)

By combining Eq. (3.29) with i = 1, 2 and Eqs. (3.33)–(3.35), we have

1

2

(
|r̂n+1|2 + |2r̂n+1 − rn|2

)
︸ ︷︷ ︸

I

−1

2

(
|rn|2 + |2rn − rn−1|2

)
+ W e�t

3

(
‖∇pn+1‖2 − ‖∇pn‖2

)

+ε2

4

2∑
i=1

(
‖√1 − φ0∇φn+1

i ‖2 + ‖√1 − φ0(2∇φn+1
i − ∇φn

i )‖2
)

−ε2

4

2∑
i=1

(
‖√1 − φ0∇φn

i ‖2 + ‖√1 − φ0(2∇φn
i − ∇φn−1

i )‖2
)

+
2∑

i=1

(
S

2
‖φn+1

i − φn
i ‖2 − S

2
‖φn

i − φn−1
i ‖2

)
+ W e

4

(
‖un+1‖2 + ‖2un+1 − un‖2

)

− W e

4

(
‖un‖2 + ‖2un − un−1‖2

)
+ 1

4

(
|q̂n+1|2 + |2q̂n+1 − qn|2

)
︸ ︷︷ ︸

II

−1

4

(
|qn|2 + |2qn − qn−1|2

)

= −�t

Pe

(
2∑

i=1

‖√1 − φ0∇μn+1
i ‖2

)
− ε2

2

2∑
i=1

‖√1 − φ0(∇φn+1
i − 2∇φn

i + ∇φn−1
i )‖2

−S
2∑

i=1

‖φn+1
i − 2φn

i + φn−1
i ‖2 − 1

2
|r̂n+1 − 2rn + rn−1|2 − W e�t

Re
‖∇ũn+1‖2 − W e�t

κ
‖√φ0ũn+1‖2

−1

4
|q̂n+1 − 2qn + qn−1|2 − 3W e

4
‖un+1 − ũn+1‖2 − W e

4
‖un+1 − 2un + un−1‖2. (3.36)

Here, we notice that the term I and term II contain variables r̂n+1 and q̂n+1 without correction, thus the above inequality 
the proposed scheme satisfies the time-discretized energy dissipation law with respect to the following modified energy

En
m = 1

2

(
|r̂n+1|2 + |2r̂n+1 − rn|2

)
+ ε2

4

2∑
i=1

(
‖√1 − φ0∇φn+1

i ‖2 + ‖√1 − φ0(2∇φn+1
i − ∇φn

i ‖2)‖2
)

+ S

2

2∑
i=1

‖φn+1
i − φn

i ‖2 + W e

4

(
‖un+1‖2 + ‖2un+1 − un‖2

)
+ 1

4
(|q̂n+1|2 + |2q̂n+1 − qn|2)

+ W e�t2

3
‖∇pn+1‖2 − 1

2
. (3.37)

By combining Eq. (3.36), Eq. (3.18) and 1
2 Eq. (3.22), we derive

1

2

(
|rn+1|2 + |2rn+1 − rn|2

)
− 1

2

(
|rn|2 + |2rn − rn−1|2

)
+ W e�t

3

(
‖∇pn+1‖2 − ‖∇pn‖2

)

+ε2

4

2∑
i=1

(
‖√1 − φ0∇φn+1

i ‖2 + ‖√1 − φ0(2∇φn+1
i − ∇φn

i )‖2
)

−ε2

4

2∑
i=1

(
‖√1 − φ0∇φn

i ‖2 + ‖√1 − φ0(2∇φn
i − ∇φn−1

i )‖2
)

+
2∑

i=1

(
S

2
‖φn+1

i − φn
i ‖2 − S

2
‖φn

i − φn−1
i ‖2

)
+ W e

4

(
‖un+1‖2 + ‖2un+1 − un‖2

)

− W e (
‖un‖2 + ‖2un − un−1‖2

)
+ 1 (

|qn+1|2 + |2qn+1 − qn|2
)

− 1 (
|qn|2 + |2qn − qn−1|2

)

4 4 4

10
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= �t

(
η1 − 1

Pe

)(
2∑

i=1

‖√1 − φ0∇μn+1
i ‖2

)
︸ ︷︷ ︸

I

−ε2

2

2∑
i=1

‖√1 − φ0(∇φn+1
i − 2∇φn

i + ∇φn−1
i )‖2

−S
2∑

i=1

‖φn+1
i − 2φn

i + φn−1
i ‖2 − 1

2
|r̂n+1 − 2rn + rn−1|2 + �t

(
η2

2
− W e

Re

)
‖∇ũn+1‖2

︸ ︷︷ ︸
II

+�t

(
η2

2
− W e

κ

)
‖√φ0ũn+1‖2

︸ ︷︷ ︸
III

−1

4
|q̂n+1 − 2qn + qn−1|2 − 3W e

4
‖un+1 − ũn+1‖2

− W e

4
‖un+1 − 2un + un−1‖2. (3.38)

Because of the choices of η1 and η2, terms I, II, III are non-positive. Therefore, the above inequality completes the proof. �
Remark 3.2. In this section, the energy dissipation property has been analytically estimated with appropriate boundary con-
ditions. In the next section, various numerical simulations will be performed to examine the performance of our proposed 
method. It is worth noting that the cases with inlet and outlet, lid-driven velocity, and buoyancy-driven force do not follow 
the present energy dissipation law in general because the boundary effects cannot be easily eliminated. We will conduct 
these simulations to confirm that our model and method still work well in various settings. In our upcoming works, the 
similar idea in [39] will be considered to construct energy-stable scheme with inlet and outlet.

3.3. Totally decoupled numerical implementation

Although Eqs. (3.10)–(3.16) are linear, the local variables: φn+1
i and ũn+1 and non-local variables: r̂n+1 and q̂n+1 are still 

weakly coupled. To achieve more efficient and totally decoupled computation, we herein introduce the implementation of 
splitting algorithms. We define φn+1

i,1 , φn+1
i,2 , μn+1

i,1 , μn+1
i,2 , ũn+1

1 , ũn+1
2 , r̂n+1

1 , and r̂n+1
2 as new intermediate variables. Since 

q̂n+1 is a time-dependent variable, we let

φn+1
i = φn+1

i,1 + q̂n+1φn+1
i,2 , μn+1

i = μn+1
i,1 + q̂n+1μn+1

i,2 , (3.39)

r̂n+1 = r̂n+1
1 + q̂n+1r̂n+1

2 , ũn+1 = ũn+1
1 + q̂n+1ũn+1

2 . (3.40)

Equations (3.10) and (3.11) are recast to be

3φn+1
i,1 + 3q̂n+1φn+1

i,2 − 4φn
i + φn−1

i

2�t
+ q̂n+1∇ · (u∗φ∗

i ) = 1

Pe
∇ · ((1 − φ0)∇(μn+1

i,1 + q̂n+1μn+1
i,2 )), (3.41)

μn+1
i,1 + q̂n+1μn+1

i,2 = (r̂n+1
1 + q̂n+1r̂n+1

2 )(H∗
i + β(φ∗)) − ε2∇ · ((1 − φ0)∇(φn+1

i,1 + q̂n+1φn+1
i,2 ))

+S(φn+1
i,1 + q̂n+1φn+1

i,2 − φ∗
i ). (3.42)

The above equality can be split into

3φn+1
i,1 − 4φn

i + φn−1
i

2�t
= 1

Pe
∇ · ((1 − φ0)∇μn+1

i,1 ), (3.43)

μn+1
i,1 = r̂n+1(H∗

i + β(φ∗)) − ε2∇ · ((1 − φ0)∇φn+1
i,1 ) + S(φn+1

i,1 − φ∗
i ), (3.44)

and

3φn+1
i,2

2�t
+ ∇ · (u∗φ∗

i ) = 1

Pe
∇ · ((1 − φ0)∇μn+1

i,2 ), (3.45)

μn+1
i,2 = r̂n+1(H∗

i + β(φ∗)) − ε2∇ · ((1 − φ0)∇φn+1
i,2 ) + Sφn+1

i,2 . (3.46)

By defining extra variables: φn+1
i,11 , φn+1

i,12 , φn+1
i,21 , φn+1

i,22 and μn+1
i,11 , μn+1

i,12 , μn+1
i,21 , μn+1

i,22 . We let

φn+1
i,1 = φn+1

i,11 + r̂n+1
1 φn+1

i,12 , μn+1
i,1 = μn+1

i,11 + r̂n+1
1 μn+1

i,12 , (3.47)

φn+1
i,2 = φn+1

i,21 + r̂n+1
2 φn+1

i,22 , μn+1
i,2 = μn+1

i,21 + r̂n+1
2 μn+1

i,22 . (3.48)

Then we can split Eqs. (3.43) and (3.44) into
11
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3φn+1
i,11 − 4φn

i + φn−1
i

2�t
= 1

Pe
∇ · ((1 − φ0)∇μn+1

i,11 ), (3.49)

μn+1
i,11 = −ε2∇ · ((1 − φ0)∇φn+1

i,11 ) + S(φn+1
i,11 − φ∗

i ), (3.50)

and

3φn+1
i,12

2�t
= 1

Pe
∇ · ((1 − φ0)∇μn+1

i,12 ), (3.51)

μn+1
i,12 = H∗

i + β(φ∗) − ε2∇ · ((1 − φ0)∇φn+1
i,12 ) + Sφn+1

i,12 . (3.52)

Equations (3.45) and (3.46) are split into

3φn+1
i,21

2�t
+ ∇ · (u ∗ φ∗

i ) = 1

Pe
∇ · ((1 − φ0)∇μn+1

i,21 ), (3.53)

μn+1
i,21 = −ε2∇ · ((1 − φ0)∇φn+1

i,21 ) + Sφn+1
i,21 , (3.54)

and

3φn+1
i,22

2�t
= 1

Pe
∇ · ((1 − φ0)∇μn+1

i,22 ), (3.55)

μn+1
i,22 = H∗

i + β(φ∗) − ε2∇ · ((1 − φ0)∇φn+1
i,22 ) + Sφn+1

i,22 . (3.56)

From Eqs. (3.49)–(3.56), we obtain the solutions of φn+1
i,11 , φn+1

i,12 , φn+1
i,21 , φn+1

i,22 and μn+1
i,11 , μn+1

i,12 , μn+1
i,21 , μn+1

i,22 via solving several 
linear and totally decoupled elliptic type equations. Therefore, the calculations are simple to implement. By recasting Eq. 
(3.15), we have

3r̂n+1
1 + 3q̂n+1r̂n+1

2 − 4rn + rn−1 = 1

2

∫
	

2∑
i=1

H∗
i (3φn+1

i,1 + 3q̂n+1φn+1
i,2 − 4φn

i + φn−1
i ) dx. (3.57)

By using the definitions of φn+1
i,1 and φn+1

i,2 , we split the above equality into

3r̂n+1
1 − 4rn + rn−1 = 1

2

∫
	

2∑
i=1

H∗
i (3φn+1

i,11 + 3r̂n+1
1 φn+1

i,12 − 4φn
i + φn−1

i ) dx, (3.58)

and

3r̂n+1
2 = 1

2

∫
	

2∑
i=1

H∗
i (3φn+1

i,21 + 3r̂n+1
2 φn+1

i,22 ) dx. (3.59)

From Eqs. (3.58) and (3.59), we obtain the solutions of r̂n+1
1 and r̂n+1

2 as follows⎛
⎝3 − 3

2

∫
	

2∑
i=1

H∗
i φ

n+1
i,12 dx

⎞
⎠ r̂n+1

1 = 4rn − rn−1 + 1

2

∫
	

2∑
i=1

H∗
i (3φn+1

i,11 − 4φn
i + φn−1

i ) dx. (3.60)

⎛
⎝3 − 3

2

∫
	

2∑
i=1

H∗
i φ

n+1
i,22 dx

⎞
⎠ r̂n+1

2 = 3

2

∫
	

2∑
i=1

H∗
i φn+1

i,21 dx. (3.61)

By recasting Eq. (3.12), we get

3ũn+1
1 + 3q̂n+1Ũn+1

2 − 4un + un−1

2�t
+ q̂n+1u∗ · ∇u∗ = −∇pn + 1

Re

(
�ũn+1

1 + q̂n+1�ũn+1
2

)

− q̂n+1

W e

2∑
i=1

φ∗
i ∇μ∗

i − φ0

κ
(ũn+1

1 + q̂n+1ũn+1
2 ). (3.62)

We split the above equality into
12
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Fig. 2. Schematic illustration of staggered marker-and-cell (MAC) mesh grids.

3ũn+1 − 4un + un−1

2�t
= −∇pn + 1

Re
�ũn+1

1 − φ0

κ
ũn+1

1 , (3.63)

3ũn+1
2

2�t
+ u∗ · ∇u∗ = 1

Re
�ũn+1

2 − 1

W e

2∑
i=1

φ∗
i ∇μ∗

i − φ0

κ
ũn+1

2 . (3.64)

From the above equations, we update ũn+1
1 and ũn+1

2 . With these computed values from previous equations, Eq. (3.16) is 
recast to be

3q̂n+1 − 4qn + qn−1 = 2�t

∫
	

2∑
i=1

[
∇ · (u∗φ∗

i )(μn+1
i,1 + q̂n+1μn+1

i,2 )
]
+

2∑
i=1

φ∗
i ∇μ∗

i (ũn+1
i + q̂n+1ũn+1

2 )

+W eu∗ · ∇u∗ · (ũn+1 + q̂n+1ũn+1
2 ) dx. (3.65)

Then, we obtain q̂n+1 from the following equality⎛
⎝3 − 2�t

∫
	

2∑
i=1

[
∇ · (u∗φ∗

i )μn+1
i,2

]
+

2∑
i=1

φ∗
i ∇μ∗

i ũn+1
2 + W eu∗ · ∇u∗ · ũn+1

2 dx

⎞
⎠ q̂n+1

= 4qn − qn−1 + 2�t

∫
	

2∑
i=1

[
∇ · (u∗φ∗

i )μn+1
i,1

]
+

2∑
i=1

φ∗
i ∇μ∗

i ũn+1
1 + W eu∗ · ∇u∗ · ũn+1

1 dx. (3.66)

With computed q̂n+1, we can successively update other variables (i.e., φn+1
i , μn+1

i , ũn+1, and r̂n+1) through back substitution. 
By applying the divergence-free condition in Eq. (3.14) into Eq. (3.13), the pressure is obtained by solving a Poisson equation. 
Finally, we explicitly update un+1 from Eq. (3.13).

3.4. Fully discrete version

In this subsection, we briefly describe the finite difference method (FDM) for the spatial discretization. We only consider 
a 2D domain 	 = (0, L1) × (0, L2) since the extension to 3D is straightforward. The uniform spatial step (mesh size) is 
defined as h = L1/N1 = L2/N2, where N1 and N2 are even positive integers along x- and y-directions. In this work, the 
staggered marker-and-cell (MAC) mesh [40] is considered. As shown in Fig. 2, the velocities (u, v) are stored at cell edges, 
the phase-field function φi , the chemical potential μi , and the pressure p are stored at cell centers. The grid points locate at 
xm = (m −0.5)h and yq = (q −0.5)h, where m = 1, 2, ..., N1 and q = 1, 2, ..., N2. Let c be an arbitrary variable locating at cell 
center, we define cn

mq as the approximation of c(xm, yq, n�t), un
m+ 1

2 ,q
and vn

m,q+ 1
2

as the approximations of u(xm+ 1
2
, yq, n�t)

and v(xm, yq+ 1
2
, n�t), respectively.

Some discrete operations are defined to be

∇dcmq =
(

Dxcm+ 1
2 ,q, D ycm,q+ 1

2

)
, Dxcm+ 1

2 ,q = cm+1,q − cmq

h
, D ycm,q+ 1

2
= cm,q+1 − cmq

h
,

�dcmq = cm+1,q + cm−1,q + cm,q+1 + cm,q−1 − 4cmq

h
,

(c,ϑ)d = h2
N1∑ N2∑

cmqϑmq,
m=1 q=1

13
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∇d · (cu)mq =
um+ 1

2 ,q(cm+1,q + cmq) − um− 1
2 ,q(cmq + cm−1,q)

2h

+
vm,q+ 1

2
(cm,q+1 + cmq) − vm,q− 1

2
(cmq + cm,q−1)

2h
,

|∇dcmq|2 = (cm+1,q − cm−1,q)
2

4h2
+ (cm,q+1 − cm,q−1)

2

4h2
,

∇d · (ϑ∇dc)mq =
ϑm+ 1

2 ,qcm+1,q + ϑm− 1
2 ,qcm−1,q + ϑm,q+ 1

2
cm,q+1 + ϑm,q− 1

2
cm,q−1

h2

−
(

ϑm+ 1
2 ,q + ϑm− 1

2 ,q + ϑm,q+ 1
2

+ ϑm,q− 1
2

h2

)
cmq,

where ϑ locates at cell center, ϑm+ 1
2 ,q = 0.5(ϑm+1,q + ϑmq) and other quantities are similarly defined. For the discrete 

functions like fm+ 1
2 ,q and gm+ 1

2 ,q , we define the discrete inner product as

( f , g)e = h2

2

N1∑
m=1

N2∑
q=1

(
fm+ 1

2 ,q gm+ 1
2 ,q + fm− 1

2 ,q gm− 1
2 ,q

)
.

For the discrete functions like fm,q+ 1
2

and gm,q+ 1
2

, we define the discrete inner product as

( f , g)h = h2

2

N1∑
m=1

N2∑
q=1

(
fm,q+ 1

2
gm,q+ 1

2
+ fm,q− 1

2
gm,q− 1

2

)
.

For the advection term u · ∇u, the central difference discretization [31] can be adopted to satisfy the fully discrete energy 
estimation. Here, (u · ∇u)x and (u · ∇u)y represent the spatial discretizations of advection term along x- and y-directions. 
The fully discrete FDM of Eqs. (3.10)–(3.16) reads as

3φn+1
i,mq − 4φn

i,mq + φn−1
i,mq

2�t
+ q̂n+1∇d · (u∗φ∗

i )mq = 1

Pe
∇d · ((1 − φ0)∇dμ

n+1
i )mq, (3.67)

μn+1
i,mq = r̂n+1

(
H∗

i,mq + β(φ∗)mq

)
− ε2∇d ·

(
(1 − φ0)∇dφ

n+1
i

)
mq

+ S(φn+1
i,mq − φ∗

i,mq), i = 1,2, (3.68)

3ũn+1
m+ 1

2 ,q
− 4un

m+ 1
2 ,q

+ un−1
m+ 1

2 ,q

2�t
+ q̂n+1(u∗ · ∇u∗)x = −Dx pn

m+ 1
2 ,q

− q̂n+1

W e

2∑
i=1

1

2

(
φ∗

m+1,q + φ∗
mq

)
Dxμ

∗
i,m+ 1

2 ,q

+ 1

Re

⎛
⎝ ũn+1

m+ 3
2 ,q

+ ũn+1
m− 1

2 ,q
+ ũn+1

m+ 1
2 ,q+1

+ ũn+1
m+ 1

2 ,q−1
− 4ũn+1

m+ 1
2 ,q

h2

⎞
⎠− 0.5(φ0,m+1,q + φ0,mq)

κ
ũn+1

m+ 1
2 ,q

, (3.69)

3ṽn+1
m,q+ 1

2
− 4vn

m,q+ 1
2

+ vn−1
m,q+ 1

2

2�t
+ q̂n+1(u∗ · ∇u∗)y = −D y pn

m,q+ 1
2

− q̂n+1

W e

2∑
i=1

1

2

(
φ∗

m,q+1 + φ∗
mq

)
D yμ

∗
i,m,q+ 1

2

+ 1

Re

⎛
⎝ ṽn+1

m,q+ 3
2

+ ṽn+1
m,q− 1

2
+ ṽn+1

m+1,q+ 1
2

+ ṽn+1
m−1,q+ 1

2
− 4ṽn+1

m,q+ 1
2

h2

⎞
⎠− 0.5(φ0,m,q+1 + φ0,mq)

κ
ṽn+1

m,q+ 1
2
, (3.70)

3un+1
m+ 1

2 ,q
− 3ũn+1

m+ 1
2 ,q

2�t
= −

(
Dx pn+1

m+ 1
2 ,q

− Dx pn
m+ 1

2 ,q

)
, (3.71)

3vn+1
m,q+ 1

2
− 3ṽn+1

m,q+ 1
2

2�t
= −

(
D y pn+1

m,q+ 1
2

− D y pn
m,q+ 1

2

)
, (3.72)

un+1
m+ 1

2 ,q
− un+1

m− 1
2 ,q

h
+

vn+1
m,q+ 1

2
− vn+1

m,q− 1
2

h
= 0, (3.73)

3r̂n+1 − 4rn + rn−1 = 1

2

2∑(
H∗

i ,3φn+1
i − 4φn

i + φn−1
i

)
d
, (3.74)
i=1
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Fig. 3. Discrete L2-errors with respect to φ1 (a), φ2 (b), and velocity field (c). In each figure, the black solid line is the reference with slope = 2.

3q̂n+1 − 4qn + qn−1

2�t
=

2∑
i=1

[
(∇d · (u∗φ∗

i ),μn+1
i )d +

(
1

2
(φ∗

i,m+1,q + φ∗
i,mq)Dxμ

∗
i , ũn+1

)
e

+
(

1

2
(φ∗

i,m,q+1 + φ∗
i,mq)D yμ

∗
i , ṽn+1

)
h
+ W e

(
u∗ · ∇u∗)x, ũn+1)

e + W e
(
u∗ · ∇u∗)y, ṽn+1)

h

]
. (3.75)

The fully discrete FDM is used to solve each subproblems in the previous subsection.

4. Computational tests

We herein perform various computational experiments to validate the accuracy, the energy law, and the capabil-
ity of our proposed model and numerical scheme. In the following simulations, we set κ = 10−8, η1 = 0.985/Pe, and 
η2 = 1.985 min{W e/Re, W e/κ}. The complex domains are embedded into a rectangular domain and a cubic domain in 
2D and 3D spaces, respectively. The spatial discretization is performed with finite difference method, see [41,42] for some 
details. The dimensionless numbers are defined as: Reynolds number Re = ρc Uc Lc/ηc , Weber number W e = ρc U 2

c Lc/σ , 
Peclet number Pe = Uc Lc/(Mμc). Here, M is the mobility, μc is the characteristic chemical potential. We can set ρc = ρ1
and ηc = η1 as the characteristic density and characteristic viscosity, ρ1 and η1 are density and viscosity of fluid 1. Lc is the 
characteristic length. For a droplet on the solid substrate, Lc is set to be the diameter of droplet or cylinder. For the simu-
lation with initial velocity or exterior velocity (e.g. the inflow or the lid-driven flow), we define the characteristic velocity 
Uc as the initial velocity, inlet velocity, or lid-driven velocity. Otherwise, the characteristic velocity is defined as Uc = Lc/Tc , 
where Tc is the characteristic time.

4.1. Accuracy and energy stability

We first validate the accuracy of the proposed second-order time-marching scheme. For a fluid flow-coupled two-material 
system in an irregular domain, the exact solutions are hard to define in general. Therefore, we consider the numerical 
reference solutions which are obtained by using finer time step, i.e., �t f = 0.05h2, where h = 1/128 (i.e., 128 × 128 grids) 
is the mesh size in a 2D unit computational domain. The initial conditions of φi (i = 0, 1, 2) are defined as

φ0(x, y,0) = 0.5 + 0.5 tanh

(
0.5 −√

(x − 0.5)2 + (y + 0.25)2
√

2ε

)
, (4.1)

φ1(x, y,0) = (1 − φ0(x, y,0))

(
0.25 −√

(x − 0.5)2 + (y − 0.2)2
√

2ε

)
, (4.2)

φ2(x, y,0) = 1 − φ0(x, y,0) − φ1(x, y,0). (4.3)

The initial velocities and pressure are zero. On the left and right boundaries, all variables are periodic. On the top and 
bottom boundaries, the zero Neumann boundary condition is considered for φi and pressure, the no-slip boundary condition 
is used for velocities. The parameters are set to be P e = Re = W e = 1, θ = 120◦ , ε = 0.0038 (almost 4 grids in diffuse 
interface). To calculate discrete L2-errors, we compare the reference solutions with the numerical solutions computed by a 
set of increasingly coarser time steps: �t = 2�t f , 4�t f , 8�t f , 16�t f . The computations are performed until t = 256�t f . 
Figs. 3(a), (b), and (c) plot the errors with respect to φ1, φ2, and velocities, respectively. In each figure, the black solid line 
has is the reference with slope = 2. The numerical results indicate that the proposed scheme is second-order accurate in 
time.
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Fig. 4. Snapshots of droplet on an irregular solid substrate. The computational moments are shown under each figure. The blue arrows represent the velocity 
field. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. Evolutions of discrete energy curves (a), average concentration φ̄i (b), and auxiliary variable q (c).

Based on the same initial setting and parameters, we next investigate the evolutions of discrete original energy En
o and 

discrete corrected energy En
c under different time steps. Fig. 4 shows the snapshots at different moments with δt = 0.5h. 

With time evolution, it can be observed that the droplet shrinks and the numerical contact angle approximately becomes 
120.8◦ . The velocity field evolves under the effect of surface tension. Fig. 5(a), (b), and (c) plot the time evolutions of energy 
curves, average concentration φ̄i , and auxiliary variable q under different time steps, i.e., �t = 125δt , 25δt , 5δt , and δt . We 
can see that the original energy and corrected energy are non-increasing and highly consistent. The average concentrations 
are conserved and the values of q are consistent with the exact value 1. The computational test results demonstrate that 
the proposed method not only satisfies the energy dissipation law but also maintains consistency.

4.2. Droplet in contact with solid substrate

In this subsection, we investigate the evolutional dynamics of a single droplet in contact with flat and tilted substrates. 
The mesh size is h = 1/64 (i.e., 256 × 128 grids). We use �t = 0.25h, Pe = W e = Re = 1, S = 2, and ε = 0.015 (almost 8
grids in diffuse interface) in all simulations. The initial conditions on 	 = (0, 4) × (0, 2) are defined to be

φ0(x, y,0) = 0.5 + 0.5 tanh

(
0.15 − y√

2ε

)
, for flat substrate, (4.4)

φ0(x, y,0) = 0.5 + 0.5 tanh

(
0.075x − y√

2ε

)
, for tilted substrate, (4.5)

φ1(x, y,0) = (1 − φ0(x, y,0))

(
0.8 −√

(x − 0.2)2 + (y − 0.15)2
√

2ε

)
, (4.6)

φ2(x, y,0) = 1 − φ0(x, y,0) − φ1(x, y,0), (4.7)

u(x, y,0) = v(x, y,0) = p(x, y,0) = 0. (4.8)
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Fig. 6. Single droplet in contact with a flat substrate. The top and bottom rows show the snapshots and energy curves with respect to θ = 45◦ and 135◦ , 
respectively.

Fig. 7. Evolutions of
∫
	

φ1 dx with respect to (a) θ = 45◦ and (b) θ = 135◦ on a flat substrate.

The same boundary conditions in previous subsection are used. The top row of Fig. 6 displays the snapshot on a flat 
substrate at t = 29.68 and the energy curves with respect to θ = 45◦ . The bottom row of Fig. 6 shows the corresponding 
results with respect to θ = 135◦ . Under the effect of contact angle, the different wetting phenomena of a single droplet in 
contact with flat substrate are observed. The circulation of velocity field moves upward and downward with respect to the 
hydrophobic and hydrophilic behaviors of droplet. During these processes, it can be observed that the original and corrected 
energies are non-increasing and highly consistent. Fig. 7(a) and (b) show the evolutions of 

∫
	

φ1 dx with respect to θ = 45◦
and 135◦ , respectively. In each figure, the inset displays the close-up view within a relatively smaller range. The results 
indicate that the mass is conserved.

The top and bottom rows of Fig. 8 show the snapshots and energy curves of a single droplet in contact with a tilted 
substrate with respect to θ = 45◦ and 135◦ , respectively. It can be observed that the hydrophobic and hydrophilic behaviors
17
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Fig. 8. Single droplet in contact with a tilted substrate. The top and bottom rows show the snapshots and energy curves with respect to θ = 45◦ and 135◦ , 
respectively.

Fig. 9. Evolutions of
∫
	

φ1 dx with respect to (a) θ = 45◦ and (b) θ = 135◦ on a tilted substrate.

of droplet are similar with the cases on a flat substrate. To perform qualitative comparisons, we rotate the profiles of 
droplet on a flat substrate in a specific angle and plot them in Fig. 8 with red open circle markers. The computational 
results confirm that the proposed model can achieve similar wetting phenomena on flat and tilted substrates. On a tilted 
substrate, the evolution of droplet still dissipates the total energy. In Fig. 9(a) and (b), time evolutions of 

∫
	

φ1 dx with 
respect to θ = 45◦ and 135◦ are plotted. The computational results demonstrate that the fluid preserves the total mass.
18
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Fig. 10. Comparison of the droplet shapes on a cylinder. Here, (b), (c), and (d) show the results with respect to θ = 30◦ , 90c irc, and 120◦ . The analytical 
and numerical profiles are represented by the blue solid line and the red dashed line, respectively.

Fig. 11. Convergence of droplet profile with respect to different mesh sizes and ε . The right one is the close-up view.

4.3. Droplet on a cylinder and mesh convergence

In the absence of gravity, the final shape of a droplet on a cylinder can be analytically obtained, see [22,43,44]. For a 2D 
droplet with area A and a static contact angle θ on a cylinder with diameter D (see Fig. 10(a)), the distance between the 
center of cylinder and the centroid of droplet (lc ) and the diameter of droplet (Dl) can be computed by

A = (α + θ)(Dl/2)2 − α(D/2) + (Dl D/4) sin θ, (4.9)

Dl = D cos θ +
√

D2 cos2 θ − D2 + 4l2c , (4.10)

where

α = arccos

(
D2 + 4l2c − D2

l

4Dlc

)
.

In this test, the full domain is 	 = (0, 2.5) × (0, 2.5). The initial state is shown in Fig. 10(a), the parameters are �t = 0.04, 
h = 2.5/128 (i.e., 128 × 128 grids), ε = 0.0141 (almost 6 grids in diffuse interface), Re = Pe = W e = 1. The initial velocities 
and pressure are zero. The density-matched case is considered. Fig. 10(b), (c), and (d) show the numerical and analytical 
shapes with respect to θ = 30◦ , 90◦ , and 120◦ . It can be observed that the numerical simulations match well with the 
analytical results.

The phase-field method approximates the solid-fluid boundary with a diffuse region with finite thickness. The diffuse 
thickness is controlled by the interfacial parameter ε . In [43], Liu and Ding observed that the diffuse region between fluid 
and solid converges as the refinement of grid or ε . To show the convergence with respect to mesh and ε , we perform 
the simulations with same initial condition in Fig. 10(a). The contact angle is set to be 60◦ . Fig. 11 displays the profiles of 
droplet with respect to εh . Here, εh = 0.8405h and h = 2.6/32, 2.6/64, and 2.5/128. It can be observed that the overlap 
between solid and fluid becomes narrow and the droplet profile converges as the refinement of mesh and ε . When the 
mesh is not enough, the CH dynamics leads to the obvious shrink of local area of droplet. This has been reported in a 
recent study of Lee et al. [45] and we also observe this phenomenon in present test. To fix this weakness, one can modify 
the CH model by adding an interfacial correction technique [46], we will investigate this in a separate work.
19



J. Yang, Z. Tan, J. Wang et al. Journal of Computational Physics 488 (2023) 112216
Fig. 12. Droplet spreading on a flat substrate. Here, (a) shows the snapshots of droplet at different moments; (b) plots the analytical and numerical values 
of θ3

a − θ3
s .

4.4. Contact line dynamics

In this subsection, we examine the performance of our model in simulating the dynamics of contact line on a flat 
substrate. During the droplet spreading, Hocking’s theory [47] showed that the apparent contact angel θa was predicted by 
the following formula

θ3
a = θ3

s + 9Cacl ln(R(t)θs/(6eξ)), (4.11)

where θs is the target contact angle, R(t) is the instantaneous length of contact line, Cacl is the instantaneous capillary 
number and is defined as Cacl = ηUcl/σ , where η is the dynamic viscosity, σ is the surface tension coefficient. The instan-
taneous velocity can be calculated by

Ucl = (R(tn+1) − R(tn))/(tn+1 − tn).

Ding and Spelt [48] and Liu and Ding [43] numerically investigated this dynamics with their characteristic moving contact 
line models. We perform the simulation in a 2D full domain 	 = (0, 5) × (0, 1.25). The solid locates under y = 0.15. The 
initial droplet locates on the substrate with initial contact angle 60◦ . We set �t = 0.1, h = 5/512 (i.e., 512 × 128 grids), 
ε = 0.0094 (almost 8 grids in diffuse interface), Pe = 10, Re = 10, ξ = 0.0042, and θs = 20◦ . The top and bottom rows of 
Fig. 12 show the axisymmetric evolution of droplet profile and the comparison between Hocking’s theory predication and 
the numerical result. With the decrease of Cacl , the droplet approaches the equilibrium state, and the length of contact line 
also converges to the equilibrium value. As reported in [43], it is reasonable to expect that θ3

a − θ3
s should be proportional 

to Cacl at low Cacl . The present simulation also shows that the computational and analytical results are in good agreement 
at low Cacl .

4.5. Flow-coupled phase separation in complex region

The wavy curved channel is a typical irregular domain with complex geometrical shapes. In this subsection, we aim 
to investigate the fluid flow-coupled phase separation dynamics in the wavy channel. The full computational domain is 
	 = (0, 4) × (0, 1). The fluid region (i.e., 1 − φ0) has the upper bound u(x) and lower bound l(x) as follows

u(x) = 0.05
√

x sin(3πx) + 0.75, l(x) = 0.01x2 cos(2πx) − 0.04 sin(6πx) + 0.3.

The initial velocities are zero. The initial states of phase-field function is φi = 0.5 + 0.1rand(x, y), where i = 1, 2 and 
rand(x, y) is the random value between −1 and 1. Along x-direction, we consider the zero Neumann boundary condi-
tion for φi . The parameters are set to be h = 1/128 (i.e., 512 × 128 grids), �t = 0.001, ε = 0.0038 (almost 4 grids in diffuse 
interface), S = 2, Pe = W e = Re = 1, and θ = 90◦ . The evolutional snapshots are shown in Fig. 13 in which the velocity 
field is represented by the blue arrows. Fig. 14(a) displays the evolutions of original energy and corrected energy. We can 
see that the energy curves are decreasing and highly consistent. To show the merit of the correction technique, we also plot 
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Fig. 13. Fluid flow-coupled binary phase separation in a wavy curved channel. The computational moments are shown under each figure.

Fig. 14. Original energy and corrected energy are shown in (a); Original energy and modified energy are shown in (b); CPU costs are plotted in (c).

the energy curves in Fig. 14(b) in which the original SAV approach (without correction) is used to perform the calculation. 
We find that the consistency is lost because of the difference between the original and modified energies. In Fig. 14(c), the 
CPU times (in second) consumed by the SAV approach with and without correction are shown. It can be observed that the 
correction technique does not obviously increase the computational costs.

4.6. Cavity flow with solid obstacles

If q equal to its exact value 1, the numerical method in Section 3 will be an appropriate approximation of incompressible 
NS equations. On the contrary, the consistency between the numerical method and original model will be violated. To 
improve the consistency, we propose a correction technique for the auxiliary variable q in Section 3 and we validate this 
via the lid-driven cavity flow in the domain with solid obstacles. The computational domain is 	 = (0, 2) × (0, 0.5). The 
parameters are h = 1/128 (i.e., 256 × 64 grids), �t = 0.002, Re = 2400. The lid velocity on the upper boundary is U = 1. 
On other boundaries, the velocity field is no-slip. For convenience, we only solve the fluid equations in this test. The top 
row of Fig. 15 shows the steady state of velocities and the inset is the local close-up view. Due to the distribution of four 
solid obstacles, the velocities in regions I, II, III, and IV are obviously different. In region I, the effect of shear force and the 
existence of solid lead to the formation of circulation. In region II, the circulation with smaller magnitude appears between 
the bigger and smaller obstacles. In region III, the circulation is not obvious because the distance between two obstacles are 
so close that the velocity field can not fully evolve. In region IV, the magnitude of velocity field is negligible because the 
incoming flow from right side is hindered and then is attracted to the upper position by shear force. In the bottom row of 
Fig. 15, we plot the evolutions of auxiliary variable q with respect to the original SAV approach (without correction) and 
the present method (with correction). We can see that the original SAV approach causes q gradually deviates away from the 
exact value 1 in time, while the present method leads to highly consistent result.

To test the choice of κ , we perform the same simulation with different values of κ (κ = 10−4, 10−6, 10−8, and 10−10). 
For the fluid-structure interaction with stationary solids, we hope the magnitude of velocity in solid becomes small enough. 
In Table 1, the values of min(

√
u2 + v2) in solid phase are listed. As the refinement of κ , we find that the magnitude of 
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Fig. 15. Lid-driven cavity flow in the domain with solid obstacles. The bottom row displays the evolutions of auxiliary variable q with respect to original 
SAV approach and the present method.

Table 1
Values of min(

√
u2 + v2) with respect to different κ .

κ 10−4 10−6 10−8 10−10

min(
√

u2 + v2) 3.386e-7 6.120e-9 6.411e-10 4.499e-10

Fig. 16. CPU costs (in second) with respect to different mesh sizes.

velocity becomes smaller. Since the results with respect to κ = 10−8 and 10−10 are small enough and in same order, we 
simply choose κ = 10−8 in this work.

In this work, the space is discretized with the FDM. The fully discrete scheme and the implementation have been de-
scribed in subsection 3.4. In each time step, we need to solve Poisson-type equations with variable coefficients to update the 
intermediate velocities. The pressure Poisson equation is solved with a linear multigrid algorithm [49]. Therefore, the whole 
cost of computational time is of O (N log(N)), where N represents the total number of grids in computational domain. We 
perform the same simulation with aforementioned parameters. In Fig. 16, the CPU costs (in second) with respect to different 
mesh sizes are listed. As we can observe, the relation between CPU cost and mesh size is almost linear.
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Fig. 17. Flow past a stationary circular cylinder at (a) Re = 20 and (b) Re = 40.

Table 2
Wake length for flow past a stationary circular cylinder at Re = 20 and Re = 40.

Authors Xu and Wang [53] Wang et al. [50] Russell and Wang [54] Silva et al. [55] Present

Re = 20 0.92 0.978 0.94 1.04 1.15
Re = 40 2.21 2.35 2.35 2.55 2.51

4.7. Flow past a stationary circular cylinder

Flow past a stationary circular cylinder is a typical benchmark in fluid-structure interaction. Many researchers considered 
this test to verify the performance of immersed boundary method (IBM) [50,51] and penalty-type method [30,52]. In the 
present simulation, the full domain is 	 = (0, 32) × (0, 8). A circular cylinder with radius 0.5 locates at (10, 4). The param-
eters are set to be �t = 2h2 and h = 1/16 (i.e., 512 × 128 grids). Since we only consider the single phase flow, the Pe and 
W e are absent. We first consider the flow past a stationary circular cylinder at low Reynolds number (Re = 20 and 40). The 
inlet velocity and diameter of cylinder are used as characteristic velocity and characteristic length, respectively. Fig. 17(a) 
and (b) show the stream lines at Re = 20 and 40. The present wake lengths and previous results are listed in Table 2. It 
is worth noting that the penalty method cannot strictly guarantee that the stream line does not penetrate the solid phase, 
slight non-physical penetration in Fig. 17(a) can be observed. To fix this problem, the boundary condition-enforced IBM [51]
will be a good choice. However, present simulation indicate that the penetration does not obviously affect the wake length, 
the present and previous results are quantitatively similar.

At moderate Reynolds number, the flow past a circular cylinder becomes unstable and forms the well-known Karman 
vortex street. In this test, the dimensionless drag coefficient is defined by

Cd = Fd

(1/2)ρU 2∞D
,

where Fd is the drag force and it can be calculated by following [56], D is the diameter of cylinder, U∞ is the inlet velocity. 
We set Re = 100 and display the snapshots of vorticity at different moments in Fig. 18. We observe the vortex shedding 
occurs periodically. In Table 3, the drag coefficients are listed. The present and previous results are quantitatively similar.

4.8. Binary fluid dynamics in 3D domain

Herein, we first consider the fluid flow-coupled phase separation in 3D wavy channel. The parameters are defined as 
�t = 0.001, Pe = W e = Re = 1, ε = 0.0075 (almost 4 grids in diffuse interface), S = 2, h = 1/64 (i.e., 128 × 64 × 64 grids), 
and θ = 90◦ . The initial conditions on 	 = (0, 2) × (0, 1) × (0, 1) are as follows

φ0(x, y, z,0) = 0.5 + 0.5 tanh

(√
(y − 0.5)2 + (z − 0.5)2

√
2ε

− (0.01x2 cos(2πx) − 0.04 sin(4πx) + 0.3)(0.95 − 0.4 cos(ϑ + πx))√
2ε

)
, (4.12)

φ1(x, y, z,0) = (1 − φ0(x, y, z,0))(0.5 + 0.5rand(x, y, z)), (4.13)

φ2(x, y, z,0) = 1 − φ0(x, y, z,0) − φ1(x, y, z,0), (4.14)

u(x, y, z,0) = v(x, y, z,0) = w(x, y, z,0) = p(x, y, z,0) = 0, (4.15)

where ϑ = tan−1((y − 0.5)/(z − 0.5)) if z > 0.5 and ϑ = π + tan−1((y − 0.5)/(z − 0.5)) otherwise. Fig. 19 shows the binary 
phase separations at different moments. Here, the light yellow region is the interior of irregular domain and green profile 
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Fig. 18. Flow past a stationary circular cylinder at Re = 100. Under each snapshot of vorticity, the computational moments are shown.

Table 3
Drag coefficients of flow past a circular cylinder at Re = 100.

Authors Mittal et al. [57] Hendersen [58] Braza et al. [59] Bergmann et al. [30] Present

Re = 100 1.35 1.35 1.36 1.41 1.37

represents the fluid-fluid interface (i.e., φ1 = 0.5). Fig. 20 displays the evolutions of energy curves and auxiliary variable q, 
we find that the original energy and corrected energy are consistently decreasing, q is consistent with the exact value 1.

Next, we investigate the motion and deformation of a single droplet in a flexed channel. The computational domain is 
	 = (0, 4) × (0, 2) × (0, 2). Along x-direction, the left side and right side are inlet and outlet, respectively. The inlet velocity 
is fixed as 0.04. The radius of the initial droplet is 0.3 and its center locates at (1, 1, 0.65). The parameters are defined as 
�t = 1/32 (i.e., 128 × 64 × 64 grids), ε = 0.015 (almost 4 grids in diffuse interface), Pe = 0.2/ε , W e = 0.65, Re = 20, S = 2. 
Fig. 21 shows the snapshots at different moments and we can observe the deformations of droplet at different positions of 
channel. From the result plotted in Fig. 22, we find q is still consistent with 1.

4.9. Falling droplet in contact with obstacles

Finally, we validate the performance of our proposed model and numerical method by simulating the falling droplet in 
contact with solids. For convenience, we assume the density ratio between two fluids are small. For a single phase flow, 
the temperature-induced density difference is comparatively small relative to the bulk phase, the well-known Boussinasq 
approximation can be used to treat the buoyancy term. In this test, we assume the density ratio between two fluids are 
small. Although the present problem does not belong to Boussinasq approximation, the similar idea is adopted to rewrite 
the momentum equation into

ρ∗
(

∂u

∂t
+ u · ∇u

)
= −∇p + 1

Re
�u −

2∑
i=1

φi∇μi + (ρ(φ1, φ2) − ρ∗)g, (4.16)

where ρ(φ1, φ2) = ρ1φ1 + ρ2φ2 is the density, ρ1 and ρ2 are positive constants, ρ∗ is the background density. In 2D space, 
g = (0, −g) is the gravity. In the present simulation, the domain is 	 = (0, 2) × (0, 4). Along x-direction, the pressure and 
φi (i = 1, 2) are periodic. The no-slip boundary condition is used for velocities on all boundaries. The initial velocities are 
zero. The initial droplet with radius: 0.41 locates at (1, 2.6). The solid obstacles are three circles with radii: 0.38, 0.25, 0.25
and central positions: (1, 1.8), (0.5, 0.85), (1.5, 0.85), respectively. The parameters are �t = h = 1/64 (i.e., 256 × 128 grids), 
ε = 0.0075 (almost 4 grids in diffuse interface), ρ1 = 3, ρ2 = ρ∗ = 1, g = 1, Pe = W e = 1, Re = 30. In Fig. 23, the snapshots 
with respect to θ = 45◦ are displayed. The results with respect to θ = 135◦ are shown in Fig. 24. Under different wetting 
conditions, we observe that the difference only occurs on fluid-solid interface at early stage. In the hydrophilic case, the 
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Fig. 19. Fluid flow-coupled binary phase separation in a 3D wavy curved channel. The computational moments are shown under each figure.

Fig. 20. Evolutions of energy curves in 3D wavy curved channel is shown in (a); Evolution of auxiliary variable q is shown in (b).

droplet are first separated into two smaller droplets and then they merge with each other to form a whole liquid. For the 
hydrophobic case, the two resulting droplets keep separated all along. The results plotted in Fig. 25 indicate that q and its 
exact value 1 are highly consistent. We plot the time evolutions of 

∫
	

φ1 dx with respect to θ = 45◦ and 135◦ in Fig. 26(a) 
and (b), respectively. The results indicate that the mass of fluid is conserved.

4.10. Kelvin–Helmholtz instability with different Reynolds numbers

The difference of velocity in fluid field leads to the formation of vortex structure, this is the famous Kelvin–Helmholtz 
instability (KHI). In atmospheric sciences, the KHI describes the formation of billowing cloud at lower atmosphere [60]. To 
J. Yang, Z. Tan, J. Wang et al. Journal of Computational Physics 488 (2023) 112216
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Fig. 21. Motion and deformation of a single droplet in a flexed channel. The computational moments are shown under each figure.

Fig. 22. Time evolutions of auxiliary variable q with respect to the droplet motion in a flexed channel.
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Fig. 23. Falling droplet in contact with obstacles under θ = 45◦ . The computational moments are shown under each figure.

test our method at different Reynolds numbers, we herein simulate the two-phase KHI with a solid plate embedding in 
domain. The initial conditions are defined as

φ0(x, y) =
{

1 if 0.48 ≤ x ≤ 0.52 and 0.2 ≤ y ≤ 0.8,

0 otherwise.
(4.17)

φ1(x, y,0) = (1 − φ0(x, y))

[
1

2
+ 1

2
tanh

(
y − 0.5 − 0.01 sin(8πx)√

2ε

)]
, (4.18)

φ2(x, y,0) = 1 − φ0(x, y) − φ1(x, y,0), (4.19)

u(x, y,0) = U tanh

(
y − 0.5 − 0.01 sin(8πx)√

2ε

)
, (4.20)

v(x, y,0) = 0, p(x, y,0) = 0. (4.21)

Here, U = 0.2 is used. The schematic illustration of initial setting is shown in Fig. 27. The simulations are performed in 
	 = (0, 1) × (0, 1). The parameters are set to be �t = 0.001, h = 1/128 (i.e., 128 × 128 grids), ε = 0.0038 (almost 4 grids 
in diffuse interface), Pe = 0.1/ε , and θ = 150◦ . The surface tension is absent. The density ratio is 1 : 1. The top, middle, 
and bottom rows of Fig. 28 show the snapshots with respect to Re = 10, 103, and 106, respectively. With the increase of 
Reynolds number, the fluid instability evolves fast. This simulation indicates that our method can work at a relatively large 
Reynolds number (i.e., Re = 106). The time evolutions of total mass under different Reynolds numbers are shown in Fig. 29. 
The inset displays the close-up view in a smaller range. It can be seen that the mass of fluid is conserved even if a large 
Reynolds number (Re = 106) is used.
27



J. Yang, Z. Tan, J. Wang et al. Journal of Computational Physics 488 (2023) 112216
Fig. 24. Falling droplet in contact with obstacles under θ = 135◦ . The computational moments are shown under each figure.

Fig. 25. Time evolutions of auxiliary variables with respect to the falling droplet in contact with obstacles.

4.11. Droplet impacting with variable density and viscosity ratios

To construct energy-stable scheme, the SAV-type method is adopted in this work. It is worth noting that SAV method is 
hard to treat the fluid problems with variable density and viscosity ratios. To show the capability of our proposed diffuse 
interface model in simulating droplet impacting with variable density and viscosity ratios, we herein do not use the SAV 
scheme to compute the following NS equations with variable density and viscosity [61]

ρ(φ)

(
∂u + u · ∇u

)
= −∇p + 1 ∇ · η(φ)(∇u + ∇uT ) + SF, (4.22)
∂t Re
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Fig. 26. Evolutions of
∫
	

φ1 dx with respect to (a) θ = 45◦ and (b) θ = 135◦ . The insets display the close-up views in a relatively small range.

Fig. 27. Initial setting of two-phase KHI in contact with a solid plate.

∇ · u = 0, (4.23)

where ρ(φ) = ρ1φ1 + ρ2φ2 and η(φ) = η1φ1 + η2φ2, SF represents the surface tension. The pressure Poisson equation with 
variable coefficients is directly computed. Please refer to [62] for the numerical treatment. In this test, the full domain is 
	 = (0, 3.5) × (0, 3.5). The parameters are �t = 8h2, h = 3.5/128 (i.e., 128 × 128 grids), ε = 0.013 (almost 4 grids in diffuse 
interface), Pe = 1/ε , Re = 650, W e = 8, θ = 90◦ . The densities are ρ1 = 829 and ρ2 = 55.16. The viscosities are η1 = 40
and η2 = 1. These parameters are chosen to match the setting in [63]. Here, the effect of gravity is neglected. The top and 
middle rows in Fig. 30 show the experimental results in [64] and numerical results in [63]. The bottom row displays the 
present results. The present and previous computational results are qualitatively similar. This simulation indicates that our 
proposed phase-field model has the potential capability to treat two-phase flows with variable density and viscosity ratios 
in contact with solid. In our upcoming work, an accurate and stable scheme for treating the problems with large density 
and viscosity ratios will be investigated.

5. Concluding remarks

In this work, we developed a diffuse interface-type model for describing incompressible binary fluid flows in arbitrary 
domains. The modified ternary CH system with wetting term was derived to capture the fluid-fluid interface and reflect 
the contact angle phenomenon. The NS equations with penalty term was used to update the velocities in the domains 
with solid obstacles. Since the solid region is fixed, we analytically proved that the proposed model satisfied the energy 
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Fig. 28. Snapshots of two-phase KHI with respect to different Reynolds numbers. The top, middle, and bottom rows correspond to Re = 10, 103, and 106, 
respectively. From left to right, the results are at t = 0.3, 0.6, 1.2.

dissipation property. By utilizing the SAV method with correction techniques, the second-order accurate, linear, and energy-
stable numerical scheme was proposed. The time-discretized energy dissipation law was estimated. The proposed model was 
efficient to implement because all decoupled computations were performed on regular Cartesian grids without complicated 
boundary treatment. The numerical simulations indicated the accuracy, stability, and capability of our proposed method. In 
upcoming works, the proposed method will be extended for the heat convection-coupled incompressible fluids [65,66] in 
irregular domains.
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Fig. 29. Time evolutions of
∫
	

φ1 dx under different Reynolds numbers.

Fig. 30. Snapshots of the droplet shape during the droplet impact on a solid. The experimental results and numerical results are adapted from [64] and [63]
with the permissions of Elsevier and American Institute of Physics, respectively. The bottom row displays the present simulation.
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